
Decomposing Partial Order Execution Graphs to Improve
 Message Race Detection

Basile Schaeli Sebastian Gerlach Roger D. Hersch

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
School of Computer and Communication Sciences

{basile.schaeli, sebastian.gerlach, rd.hersch}@epfl.ch

Abstract

In message-passing parallel applications, messages

are not delivered in a strict order. In most applications,
the computation results and the set of messages produced
during the execution should be the same for all distinct
orderings of messages delivery. Finding an ordering that
produces a different outcome then reveals a message race.
Assuming that the Partial Order Execution Graph (POEG)
capturing the causality between events is known for a
reference execution, the present paper describes tech-
niques for identifying independent sets of messages and
within each set equivalent message orderings. Orderings
of messages belonging to different sets may then be re-
executed independently from each other, thereby reducing
the number of orderings that must be tested to detect mes-
sage races. We integrated the presented techniques into
the Dynamic Parallel Schedules parallelization frame-
work, and applied our approach on an image processing,
a linear algebra, and a neighborhood-dependent parallel
computation. In all cases, the number of possible order-
ings is reduced by several orders of magnitudes. In order
to further reduce this number, we describe an algorithm
that generates a subset of orderings that are likely to re-
veal existing message races.

1. Introduction

One of the major difficulties when developing a paral-

lel program is to simultaneously ensure that an application
has good performance and that different runs with the
same input always produce the same result. Obtaining
good performance generally requires removing synchro-
nizations within the parallel program, with the risk that
the correctness of the computation is no longer guaranteed.
Unfortunately, the exponential number of possible mes-
sage orderings makes it impossible to execute them all
and compare the final computation result after each run.

For most scientific applications however, both the
number of messages produced during the program execu-
tion as well as their content are independent of the order
in which messages are delivered. We say that such appli-
cations generate a fixed message set. For instance, most
linear algebra computations and finite elements methods
have that property. On the contrary, applications such as
divide-and-conquer optimization problems where the cur-
rent best solution influences the remaining of the compu-
tation do not belong to that category, and are therefore not
considered in the current study.

We present a method to reduce the number of possible
orderings that must be tested to detect message races
within message-passing parallel applications producing a
fixed set of messages. Given the Partial Order Execution
Graph (POEG) [1] of an execution of a parallel applica-
tion, a static analysis of the graph enables partitioning it
into smaller parts. The remaining number of possible or-
derings is further reduced by using a partial-order reduc-
tion technique that leverages knowledge about whether
computation steps read or modify the local memory.

Reducing the number of equivalent orderings ensures
that only relevant cases are tested, therefore increasing the
likelihood that existing message races are revealed. More-
over, the decomposition of the application execution al-
lows developers to focus their effort on specific parts of
the application that may be difficult to debug. Once a race
is detected, the decomposition isolates its potential
sources within the part being tested.

We implemented the proposed techniques within the
Dynamic Parallel Schedules (DPS) framework [3]. This
framework facilitates the creation of parallel applications
by providing high-level constructs. Parallel applications
are described as data-driven acyclic graphs of serial op-
erations, allowing POEGs to be easily derived from exe-
cution traces. It is sufficient to recompile a parallel appli-
cation in order to enable the message race detection
mechanism. Any modification to the application code or
input data is therefore immediately taken into account.
Detected erroneous executions can then be replayed [1, 6]
for debugging purposes.

21st International Parallel and Distributed Processing Symposium (IPDPS’07)
12th International Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS-ToPMoDRS), March 26-30, Long Beach, USA, 2007

Although the ideas and example applications are pre-
sented in the context of DPS applications, they can be
generalized to any parallel program that can be modeled
using a POEG. This is illustrated in section 7, where we
apply the POEG decomposition to a simple MPI applica-
tion.

2. The Parallel Schedules Model

DPS describes a distributed memory parallel computa-

tion as a flow graph composed of serial operations ar-
ranged to form an acyclic directed graph, whose edges are
defined by the messages that transit between operations.
The flow graph describes the asynchronous flow of data
between operations.

Split Merge

ComputeData Init Final

ComputeData

ComputeData

Leaf
Figure 1. Flow graph describing a high level
task divided into subtasks by a custom split op-
eration. Leaf operations perform their tasks in
parallel.

The particular implementation of operations is left to
the developer, but each operation must be of one of four
fundamental types: leaf, split, merge or stream. Leaf op-
erations accept a single input and generate a single output
message. Split operations take one input message and
generate one or several output messages. Merge opera-
tions expect one or several input messages, and generate a
single output message once all expected messages have
been received. Split operations are typically used to sub-
divide a high-level task into several subtasks that can be
performed in parallel. Computation results are then col-
lected and aggregated by the matching merge operation
(Figure 1). The fourth operation type, the stream, puts no
restriction on the number of input and output messages
and allows the programmer to refine the synchronization
granularity by streaming out new messages as soon as
specific groups of incoming messages have been received.

Split and leaf operations are executed atomically. On
the other hand, in order to allow the execution of other
operations, merge and stream operations are suspended
while waiting for messages to arrive. Given the acyclic
nature of the flow graph, a parallel schedule is deadlock-
free, provided that no operation terminates without out-
putting a message.

Operations running in different processes may be run-
ning concurrently, but in a given process, only one opera-
tion runs at a time. Pending messages are queued until
they are delivered to the consuming operation. A message
race may therefore occur if the execution ordering of two

non-commutative operations is not constrained by the
flow graph.

 P0 P0P1

P2

P3

border exchange state update

Update Send bord.

Send bord.

Send bord.

Send bord.

Update

Update

Figure 2. The flow graph of one iteration of
a neighborhood dependent parallel computation.

 Figure 2 displays the flow graph of one iteration of an
iterative neighborhood-dependent parallel computation.
Processes P1, P2 and P3 each store one third of the proc-
essed data domain. At each iteration, every process sends
a request to its neighbors, which send back a copy of their
subdomain border (Send border operation). The computa-
tion of the new state of the subdomain (Update) is per-
formed once the requested borders have been received.
However, this flow graph enforces no synchronization
between the border exchange and state update phases.
Therefore, delaying some messages may have unexpected
consequences.

 P0 P0P1

P2

P3

(1)

(2)
(a)

(b)

(c)

Update

Update

Update

Send

Send

Send

Send

Figure 3. If the processing of the split opera-
tion (a) on P2 is delayed, the state of P1 and P3 is
read by (b) and (c) after having been updated.

In the execution depicted in Figure 3, the borders sent
in messages (1) and (2) have already been updated, caus-
ing incorrect values to be used to update the subdomain
stored on P2 and distorting computation results. However,
the existence of the race depends on the actual implemen-
tation of the operations: here it is inexistent if the borders
to be exchanged are stored in double buffers, allowing a
copy of the old border to be kept when P1 and P3 perform
the update. Sending the copy of the old subdomain bor-
ders in messages (1) and (2) then allows the correct com-
putation to be performed on P2. Detecting the race there-
fore requires executing the actual application code for
different orderings of message delivery. We develop this
example throughout the paper to illustrate the concepts of
the partial order graph decomposition.

3. Partitioning the POEG

Given a trace of an execution of a DPS application, we

can easily determine the causal dependencies between the
different messages sent during the application execution
(Figure 4a). We then decompose all operations into
atomic steps, which represent parts of operations that are
executed atomically (Figure 4b). An atomic step is trig-
gered by an incoming message. Leaf and split operations
consist of a single atomic step, while merge and stream
operations are decomposed into one atomic step per input
message. Therefore, admissible message orderings are
equivalent to admissible orderings of atomic step execu-
tions (Figure 4c). The processed message-passing graph is
called the Partial Order Execution Graph (POEG) of the
application execution [1], where edges represent Lam-
port’s happened-before relationship [8]. In our context, a
message a is delivered before b, or, equivalently, the
atomic step triggered by a is executed before the one trig-
gered by b, if a is a predecessor of b in the POEG.

 (a)

(c)

(b)

Figure 4. (a) A message-passing graph of a
simple application, (b) its corresponding Partial
Order Execution Graph, and (c) four orderings
allowed by the POEG.

In the general case, the number of admissible orderings
grows exponentially with the number of messages sent,
making it impossible to test them all. Many orderings can
however be prevented by partitioning the POEG into sub-
graphs representing parts of the application execution,
such that each part can be processed independently from
the others.

We first separate the contributions of atomic steps run-
ning on different processes. Indeed, swapping the delivery
order of two messages delivered to different processes
will not change the computation outcome. However, for
the contributions of each process to be tested independ-
ently, we must assume that the set of messages delivered
to each process is fixed. Since the input messages of a
process are the output messages of other processes, the set
of messages produced by each process must be fixed.
Finding an ordering of the inputs causing a process to
produce a different set of output messages then reveals a
message race. If the different outcome is actually inten-
tional, the application being tested does not produce a
fixed message set, and the contribution of the different

processes may not be tested independently from each
other. Such cases are not considered in this paper.

Given the POEG of the whole application, we obtain
the POEG of each process by removing all the messages
delivered to other processes, while maintaining the cau-
sality between messages delivered to the process under
consideration. The POEG of each process therefore de-
fines the admissible orderings of all computations per-
formed in the same memory space. Figure 5 illustrates
this principle by isolating the contribution of process P2
from Figure 2. When focusing on a single process, it be-
comes clear that the execution order of the send border
and update operations (S and U in Figure 5) is not con-
strained, and that a message race might occur.

Update
Send

Send

P2
(a) (b)

U

S

S
Figure 5. (a) Operations running on process
P2 of Figure 2, and (b) the POEG of P2, after de-
composition into atomic steps and removal of
messages delivered to other processes.

Within a process, the causality between messages can
prevent distinct subgroups of messages from being inter-
leaved. Figure 6 illustrates this principle on two iterations
of our neighborhood-dependent computation. The syn-
chronization enforced by the merge-split construct found
between the two iterations is represented within the
POEG by the fully interconnected dependences between
the atomic steps preceding the merge and the ones follow-
ing the split operation (Figure 6b).

P2
P0 P0 P0

(a)

(b)

merge - split

P2

Figure 6. (a) Two iterations of the neighbor-
hood-dependent computation illustrated in
 Figure 2 (P1, P3 not shown), and (b) equivalent
POEG of P2.

In order to identify causally dependent subgroups in
the POEG of each process, we first introduce an auxiliary
atomic step between every pair of sets of fully intercon-
nected atomic steps (dark grey node in Figure 7a). We
then add a source and sink node to the graph, and run a

unit flow through it. The output flow of each atomic step
is split equally between each successor, and the contribu-
tions of multiple input flows to a single atomic step are
added. When the sum of the input flows into an atomic
step is one, the number of messages delivered before and
respectively after its execution is constant. We are there-
fore allowed to split the messages sent before and after
such an atomic step into two consecutive subgroups, each
one with its own POEG.

(a)

(b)

1/3 1/6

1/6

1/3

1/3

1/3 1 1/3

1/3

1/3

1/3 1/6

1/6
u v

Figure 7. (a) Introduction of an auxiliary
atomic step (dark grey), and of source and sink
nodes u and v, and (b) partition of the POEG into
subgroups.

4. Partial-Order Reductions

Within a partial order execution graph, orderings can

be prevented by inserting additional edges, which force
the relative delivery order of specific messages, or
equivalently, the relative execution order of the atomic
steps they trigger.

Some of the orderings that should be prevented are the
ones allowed by the POEG that cannot occur in practice.
For instance, message-passing libraries may guarantee a
FIFO delivery of messages. Applications that rely on that
assumption may send subsequent pieces of data without
explicit synchronization between successive messages. In
order to account for that assumption within the POEG, we
may, when a single delivered message causes multiple
messages to be sent, add ordering constraints between the
messages that are destined to the same destination process.

Within subgroups, distinct message orderings may also
be equivalent. Let us assume that we know for each op-
eration (and by extension for each atomic step and the
message that triggers it) if the state of the process is only
read or if it is modified. If two atomic steps only read the
unmodified state, the order of their execution has no im-
pact on the final process state. If two messages trigger
such atomic steps, and if the POEG defines no causality
between them, we say that the messages are exchangeable.
However, we cannot constrain their delivery order with-
out taking their successors and predecessors into account.
Indeed, if we constrain a to be delivered before b, we
transitively constrain all predecessors of a (noted Preda)
to be delivered before all successors of b (noted Succb).

An edge a → b can therefore be added to the POEG only
if every message in {a} » Preda\ Predb is exchangeable
with all messages in {b} » Succb\ Succa (“\” denotes the
set difference operation). The partial-order reduction [5]
of a POEG is therefore performed by adding all the edges
that satisfy this condition.

r
w
-

v1

r
-
-

v2

r
r
w

v3

(r) (r)
(r) (-)

(w) (-)

a
b
c

Variables Access vectors Exchange rules

Figure 8. Three possible access vectors for a
process with three member variables a, b and c.
Member variables can be read (r), modified (w),
or ignored (-). According to the exchange rules
on the right, the message associated to v2 can be
exchanged with those associated to v1 and v3.

Computations that modify different variables in the
process state may also be commutative. Detailed memory
access information can be represented using access vec-
tors, which specify for each message whether each vari-
able of the process state is read, written or ignored by the
triggered atomic step. The partial-order reduction can also
be applied, using a generalized definition for the ex-
change of messages: two messages can be exchanged if
all the members of their access vector can be exchanged
(Figure 8).

An application of the algorithm is illustrated in
 Figure 9a, where edges are added between read-only
atomic steps (in white). The orientation of the new edges
is chosen so as not to prevent orderings where the process
state is read after the update. This enables us to check that
such orderings do not change the computation outcome.

(a) (b)

(c)

(i) (ii)

S

S

U
S S

U

S S

U

Figure 9. (a) POEG of process P2 after par-
tial-order reduction, (b) transitive reduction and
(c) subgroup partitioning.

The adjunction of edges in the POEG may cause some
pairs of messages to be connected through several paths.
Performing the transitive reduction of the POEG removes
the superfluous edges (Figure 9b), and may enable a finer-
grain subgroup partitioning. In Figure 9c, the message
triggering the atomic step of the split operation now al-
ways occupies the first position and can therefore be used

to further partition the subgroup. With this final partition,
the number of admissible message orderings is 1 for the
subgroup (i), and 60 for the subgroup (ii), versus 168 or-
derings for the POEG of Figure 5.

Each subgroup is tested for message races by execut-
ing multiple different orderings, and by checking that the
final process state and the set of generated messages are
identical in all cases. The developer may decide for each
subgroup whether to test all or only a subset of possible
orderings.

5. Generating a subset of possible orderings

A single bug generally causes races in many different

orderings. Within the subgroup of Figure 5 for instance,
the error is revealed as soon as one of the two borders is
sent after the subdomain update, which occurs in 24 or-
derings out of the admissible 168 orderings. We therefore
suspect that most message races can be revealed by test-
ing a small subset of carefully selected orderings, gener-
ated as described below.

Since we want to ensure that the final process state is
identical for all orderings, and since the final state is de-
termined by the last atomic step that modified it, we gen-
erate one ordering for each message such that the message
is delivered as late as possible. Formally, given a sub-
group of messages S we generate the following orderings
(parentheses denote an ordered list):

{(S \{a, Succa}, a, Succa) | a œ S}
This expression means that, for every message a in S,

we generate an ordering where all messages other than the
successors of a in the POEG of S are delivered before a.

The second requirement is that orderings produce a
fixed set of messages. We therefore generate orderings
such that every message is delivered right after every
other message, and both are delivered as early as possible
in order to test their influence on the following computa-
tions. The rationale here is to check that the output mes-
sages sent by triggered atomic steps are the same no mat-
ter which other atomic step (which could modify the proc-
ess state) was executed right before. Formally, if Preda is
the set of predecessors of a in the POEG of S, and Preda,b
is the union Preda » Predb, we generate the following set
of orderings:

{(Preda,b, a, b, S\{a, b, Preda,b}) | a, b œ S, a ∫ b}
The proposed algorithm guarantees that if the delivery

order of two messages is not constrained by the flow
graph, we generate at least one ordering containing
(…,a,b,…) and one ordering containing (…,b,a,…). Note
that we only consider orderings that are admissible ac-
cording to the POEG of the subgroup. In consequence,
less than |S|·(|S|-1) distinct orderings are generated in the
general case, where |S| is the number of messages in the
subgroup S.

Although one may conceive an application whose bugs
are not exposed when testing the sets of orderings defined
above, such cases should occur very rarely in practice. In
order to further reduce the probability that races remain
undetected, we may additionally execute randomly gener-
ated orderings. Such a technique was successfully used
for detecting data races in multithreaded applications [15].
By increasing the number of randomly generated order-
ings, we can arbitrarily increase our confidence that no
message race exists.

6. Implementation and results

We implemented the message race detection within the

Dynamic Parallel Schedules (DPS) framework [3]. We
obtain the initial execution trace by executing the applica-
tion once and logging the messages sent and the opera-
tions executed. We also use the checkpointing capabilities
of DPS [4] to keep a copy of the initial state of each proc-
ess. When the application completes, operations are de-
composed into atomic steps, the partial order execution
graph is derived from the logged messages and operations,
and the partition into subgroups is performed.

In order to enable the partial order reduction described
in section 4, we determine whether variables were modi-
fied or not by an operation by comparing checkpoints of
the process state taken immediately before and after the
operation execution. Within operations, process state vari-
ables are accessed through a function, which collects the
list of variables accessed during the operation execution.
Variables that are accessed but not modified are marked
as read. The access vector of each operation is then con-
structed by combining the collected information for all the
variables of the process state. All the messages delivered
to the same operation share the same access vector.

Since the FIFO link property is not guaranteed by the
DPS runtime, we do not consider this optimization in our
study.

When the orderings of a subgroup are being tested, the
initial process state is recovered from a checkpoint before
the execution of each ordering. Another checkpoint is
taken once all the atomic steps have been executed, and
serves as a reference for verifying that all orderings lead
to the same final process state. It also provides the initial
process state for testing the next subgroup. Generated
messages are checked against the reference execution as
soon as they are produced. If identity is too strict a condi-
tion, custom comparison functions may be used to com-
pare states and messages.

The integration within the framework allows the whole
procedure to be performed without any modification of
the source code. When an ordering leads to a different
final process state or message set, the reference input and
output messages, the initial process state and the ordering
are written to stable storage together with the reference

ordering. The stored information can then be used to re-
play the ordering that caused the race. Since executions
are replayed within a single multithreaded process, a con-
ventional debugger can be used to study the erroneous
computations.

6.1 Results

We present practical results for a few parallel applica-

tions. In order to measure the number of orderings as well
as their length, the metric used for all measurements is the
total number of atomic steps that must be executed to test
all possible orderings. This number is obtained by sum-
ming for all subgroups the number of orderings allowed
by their POEG multiplied by the number of messages
within the subgroup.

We first quantify the benefits of the partial order re-
duction and subgroup decomposition using the neighbor-
hood-exchange application illustrated in Figure 2. Table 1
compares the number of executed atomic steps for two
iterations of the neighborhood-exchange computation,
when no decomposition is performed, when using only
the process decomposition (PD, section 3), when adding
the partial order reduction (PD+POR, sections 3 and 4),
and when performing the full subgroup decomposition
(sections 3 and 4). We see that it is impossible to execute
all orderings without decomposing the POEG of the ap-
plication, even when it runs on only two processes. How-
ever, the proposed optimizations reduce the number of
atomic steps to be executed by a factor of 1013. In practice,
testing all orderings for an application run of 6 iterations
on 8 processes takes about 8 seconds on a 2.4GHz Pen-
tium 4 processor.

We carry out the same analysis for a parallel imple-
mentation of the Floyd-Steinberg halftoning algorithm [9],
which converts a grayscale image into a black and white
image. It determines for each grayscale pixel whether it
should be black or white. The error, i.e. the difference
between the desired grey value and the selected binary
value, is then added according to an error-diffusion
weight matrix to the grey value of the unprocessed
neighboring pixels. Table 2 summarizes the results. For 2
processes, the full decomposition reduces the number of
atomic steps that must be executed by a factor of 107
compared to when no decomposition is performed. Test-
ing all orderings for an application run on 8 processes
takes about 105 minutes for a grayscale image of size 256
x 256 pixels.

Finally, Table 3 presents the results of our techniques
running on a parallel block LU factorization application.
The matrix size is given by n, while b specifies the size of
a block within the matrix. Since the iterations of the com-
putation are loosely synchronized in order to maximize
the pipelining of the computation, subgroups contain
many messages with little dependencies between each

other, causing the number of atomic steps to be executed
to explode: we could only compute it for n/b=3 and using
the full subgroup decomposition with partial-order reduc-
tion. It remains however possible to test a subset of possi-
ble orderings using the algorithm described in section 5,
as shown by the last line of Table 3. The partial test for a
160x160 matrix with n/b=5 takes about 30 minutes.

In order to test our message race detection software,
we artificially introduced races by removing synchroniza-
tions or code that reorders messages within merge opera-
tions. We compared the results of the partial and full test-
ing in all cases where the latter could be performed. In the
applications presented here, testing the orderings pro-
duced by the algorithm described in section 5 was suffi-
cient to find every message race. We also discovered a
few genuine bugs in previous implementations of the LU
factorization application.

Table 1. Total number of atomic steps to be
executed in order to test all orderings (neighbor-
hood-exchange application with two iterations).

 2 proc. 4 proc. 6 proc.

No decomposition 5.6·1016 - -

Process decomposition (PD) 2.4·105 4.9·105 10·106

PD+partial order reduc. (POR) 28840 65664 9.4·106

Subgroup decomp. + POR 860 1932 12616

Table 2. Total number of atomic steps to be
executed in order to test all orderings (parallel
Floyd-Steinberg halftoning algorithm).

 2 proc. 4 proc. 8 proc.

No decomposition 6.8·108 - -

Process decomposition (PD) 848 3.5·105 4.0·1012

PD+partial order reduc. (POR) 116 18576 7.5·1010

Subgroup decomp. + POR 42 1280 6.8·106

Table 3. Total number of atomic steps to be
executed in order to test all orderings or the sub-
set defined in section 5 (pipelined parallel LU
factorization).

 n/b =3 n/b =4 n/b =5
Subgroup decomp. + POR 226593 - -
Subset defined in section 5 35822 3.0·105 1.4·106

6.2 Limitations

Using a single multithreaded process to test all order-

ings limits the size of instances that may be tested. In our
experiments, storing the whole trace of the parallel Floyd-
Steinberg application only requires 4.4MB when process-
ing a 256x256 image on 8 processes, but looking for races

in the LU factorization application of a 160x160 matrix
on 10 processes requires 350MB of memory. Since dif-
ferent processes are tested independently, we could test
them in parallel, thereby further reducing running times
and memory consumption. Since message races generally
do not depend on the actual size or content of the proc-
essed data, it is generally sufficient to test an application
using a small data set, which both reduces the running
time and the amount of memory required to store the ap-
plication trace. Data sets that trigger different execution
paths within the application should be tested separately.

7. Application to a simple MPI application

The techniques described in this paper apply to any

application that can be modeled using a POEG. We adapt
an example and an event model from [16] to derive the
POEG of a simple wildcard-free MPI application (note
that we do not claim that all MPI applications can be
modeled using a POEG). Figure 10 shows the MPI
pseudo-code and the corresponding POEG for a
neighborhood-dependent application similar to the one
used throughout this paper. The model described in [16]
distinguishes send and receive events. The edges of the
POEG connect send events to their matching receive, and
events from blocking MPI calls to the events of the sub-
sequent call performed by the program. A send from
process i to process j at iteration k is denoted as sk

i,j, while
rk

i,j denotes the matching receive event.

/* np: Number of processes, rk: Process rank */
/* maxIter: Number of iterations */
for (i = 0; i < maxIter; ++i) {
 if(rk==0) MPI_Send(lower border to proc. 1);
 else if (rk < np-1)
 MPI_Sendrecv(lower border to proc. rank+1,
 lower border of proc. rank-1);
 else MPI_Recv(lower border of proc. np-2);
 if(rk==0) MPI_Recv(top border of proc. 1);
 else if (rk < np-1)
 MPI_Sendrecv(top border to proc. rank-1,
 top border of proc. rank+1);
 else MPI_Send(top border to proc. np-2);
 /* update subdomain */
}

rank 0

rank 1

rank 2 r1,2 0 s2,1 0

s1,2 0 r2,1 0

r0,1 0 s1,0 0

s0,1 0 r1,0 0

r1,2 1 s2,1
1

s1,2 1 r2,1
1

r0,1 1 s1,0
1

s0,1 1 r1,0
1

Figure 10. MPI pseudocode for a neighbor-
hood exchange iterative computation, and corre-
sponding POEG for two iterations on three nodes.

The ordering of events on individual processes is fully
determined, except for pairs of send and receive events
caused by MPI_Sendrecv calls. Nevertheless, the number
of event orderings grows exponentially with 60, 6268 and
6.5·105 orderings for 1, 2 and 3 iterations on 3 processes
respectively. Once the decomposition is performed how-
ever (Figure 11), the number of orderings grows linearly
with the number of processes and the number of iterations.
The number of orderings for each process with rank other
than 0 and np-1 is 2ÿ2ÿmaxIter.

rank 0

rank 1

rank 2 r1,2
0 s2,1 0

s1,2
0 r2,1 0

r0,1
0 s1,0 0

s0,1
0 r1,0 0

r1,2 1 s2,1
1

s1,2 1 r2,1
1

r0,1 1 s1,0
1

s0,1 1 r1,0
1

(a)

(b)

r1,2
0 s2,1 0

s1,2
0 r2,1 0

r0,1
0 s1,0 0

s0,1
0 r1,0 0

r1,2
1 s2,1

1

s1,2
1 r2,1

1

r0,1
1 s1,0

1

s0,1
1 r1,0

1rank 0:
 1 ordering

rank 1:
 4ÿ2 orderings

rank 2:
 1 ordering

Figure 11. (a) Process partitioning and (b)
subgroup partitioning and resulting number of
orderings.

8. Related work

Mosbah and Ossamy [11] as well as Otta and Racek

 [13] detect message races by evaluating predefined predi-
cates that consider both the local and the global state of
the application at various points of the execution. Since
no control is applied on the program execution, the detec-
tion can only work for executions where message races
actually occur.

Several variants of controlled re-execution of message-
passing applications have been described in the literature.
Mittal and Garg [10] determine where to add synchroniza-
tions in order to maintain a global predicate, thereby
pointing to the location of synchronization bugs. However,
they do not allow events to be reordered on a given proc-
ess. Duesterwald et al. [2] describe a slicing method to
isolate only problematic statements when an erroneous
result is observed. The slice may then be re-executed for
identifying the source of error. Kilgore and Chase [7]
identify sets of messages that can be received in any order
on a given process, and propose an algorithm that gener-
ates a single ordering that maximizes the number of re-
versed message pairs compared to the original execution.

In essence, this is similar to our decomposition method,
but no results are shown that would allow us to compare
the two approaches. Moreover, none of these proposals
considered access to local memory in their analysis.

Several authors argue that detecting the first message
race is beneficial [12, 14]. Correcting early races not only
removes subsequent instances of the same race, but also
prevents potential spurious races from being enabled (e.g.
a race exists because a prior race invalidates some as-
sumption made on the data). Our method verifies sub-
groups in chronological order, and output messages are
checked against the reference run as soon as they are sent.
We can therefore determine the temporal location of
every race, thereby allowing the developer to correct early
races first.

9. Conclusion and future work

We presented a method to identify and prevent equiva-

lent event orderings within a parallel application modeled
as a Partial Order Execution Graph (POEG). We partition
the POEG into smaller parts, firstly by distinguishing the
sets of messages triggering computations in different
memory spaces, and secondly by separating causally de-
pendent message subsets. Leveraging information about
how the computations triggered by each message read or
modify state variables, we identify equivalent orderings
within each subset. Equivalent orderings are prevented by
adding edges to the POEG, which force the relative deliv-
ery order of the messages. We then showed how to gener-
ate a subset of orderings that are still able to reveal many
potential errors.

We integrated the POEG decomposition and race de-
tection methods within the DPS parallelization framework,
where POEGs are easily derived. For three different par-
allel applications, we evaluated the influence of the pro-
posed techniques on the total number of messages that
must be delivered to the application in order to test all
orderings. Since our approach is based on a static graph
analysis, it cannot be applied to applications that may
produce different sets of messages depending on the evo-
lution of the computation. In the future, we intend to re-
move this limitation by performing the analysis dynami-
cally during the execution of the application.

The DPS software is available on the Web under the
GPL license at http://dps.epfl.ch. The latest version in-
cludes the determinacy verification techniques described
in this paper.

10. References

[1] J.-D. Choi, S. L. Min, Race Frontier: reproducing data

races in parallel-program debugging, Proc. 3rd ACM SIG-
PLAN symposium on Principles and practice of parallel
programming (PPoPP’ 91), pp. 145-154, 1991

[2] E. Duesterwald, R. Gupta, M. L. Soffal, Distributed Slic-
ing and Partial Re-execution for Distributed Programs,
Lecture Notes In Computer Science; Vol. 757, Proceedings
of the 5th International Workshop on Languages and
Compilers for Parallel Computing, pp. 497-511, 1992

[3] S. Gerlach, R. D. Hersch, DPS - Dynamic Parallel Sched-
ules, Proc. 17th Int’tional Parallel and Distributed Proc-
essing Symposium (IPDPS'03), pp. 15-24, Nice, France,
April 2003, see also http://dps.epfl.ch

[4] S. Gerlach, R.D. Hersch, Fault-tolerant Parallel Applica-
tions with Dynamic Parallel Schedules, Proc. 19th Int’l
Parallel and Distributed Processing Symposium
(IPDPS’05), p. 278b, 2005

[5] P. Godefroid, Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion
Problem, PhD. thesis, University of Liege, Computer Sci-
ence Department, 1994

[6] C.-E. Hong, B.-S. Lee, G.-W. On, D.-H. Chi, Replay for
debugging MPI parallel programs, Proc. MPI Developer's
Conference, pp. 156-160, July 1996

[7] R. Kilgore, C. Chase. Re-execution of distributed pro-
grams to detect bugs hidden by racing messages. Proc. 30th
Hawaii Int’l Conference on System Sciences (HICCS), vol.
1, p. 423, 1997

[8] L. Lamport, Time, clocks, and the ordering of events in
distributed systems, Communications of the ACM, 21(7),
July 1978

[9] P. T. Metaxas, Parallel digital halftoning by error-diffusion,
Proc. Paris C. Kanellakis memorial workshop on Princi-
ples of computing & knowledge: Paris C. Kanellakis me-
morial workshop on the occasion of his 50th birthday, pp.
35-41, 2003.

[10] N. Mittal, V. K. Garg, Debugging distributed programs
using controlled re-execution, Proc. 19th ACM Symposium
on Principles of Distributed Computing, pp. 239-248, 2000

[11] M. Mosbah, R. Ossamy, Checking global properties for
local computations in graphs with applications to invariant
testing, Proc. 5th Mexican Conference in Computer Sci-
ence, pp. 35-42, 2004

[12] R. H. B. Netzer, T. W. Brennan, S. K. Damodaran-Kamal,
Debugging race conditions in message-passing programs,
Proc. SIGMETRICS Symposium on Parallel and Distrib-
uted Tools, pp. 31-40, 1996

[13] M. Otta, S. Racek, A method for testing and debugging
distributed applications, Int’l Conference on Trends in
Communications (EUROCON'2001), vol. 2, pp. 548-551,
July 2001

[14] H.-D. Park, Y.-K. Jun, Detecting the first races in parallel
programs with ordered synchronization, Proc. 1998 Int’l
Conference on Parallel and Distributed Systems, pp.201-
208, 1998

[15] S. Qadeer, D. Wu, KISS: keep it simple and sequential,
Proc. ACM SIGPLAN 2004 Conference on Programming
language design and implementation, pp. 14-24, 2004

[16] S. F. Siegel, G. S. Avrunin, Modeling wildcard-free MPI
programs for verification, Proc. 10th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming (PPoPP ’05), pp. 95-106, 2005

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Don-
garra, MPI: The Complete Reference (Vol. 1), 2nd edition,
MIT Press, 1998

