
A simulator for parallel applications with dynamically varying
compute node allocation

Basile Schaeli, Sebastian Gerlach, Roger D. Hersch

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
School of Computer and Communication Sciences

{basile.schaeli, sebastian.gerlach, rd.hersch}@epfl.ch

Abstract
Dynamically allocating computing nodes to parallel applica-

tions is a promising technique for improving the utilization of
cluster resources. We introduce the concept of dynamic efficiency
which expresses the resource utilization efficiency as a function of
time. We propose a simulation framework which enables predict-
ing the dynamic efficiency of a parallel application. It relies on
the DPS parallelization framework to which we add direct execu-
tion simulation capabilities. The high level flow graph description
of DPS applications enables the accurate simulation of parallel
applications without needing to modify the application code.
Thanks to partial direct execution, simulation times and memory
requirements may be reduced. In simulations under partial direct
execution, the application's parallel behavior is simulated thanks
to direct execution, and the duration of individual operations is
obtained from a performance prediction model or from prior
measurements. We verify the accuracy of our simulator by com-
paring the effective running time, respectively the dynamic effi-
ciency, of parallel program executions with the running time,
respectively the dynamic efficiency, predicted by the simulator.
These comparisons are performed for an LU factorization appli-
cation under different parallelization and dynamic node alloca-
tion strategies.

1. Introduction

Recent studies show that many parallel applications do not
fully use the available hardware [6, 9]. Since in most parallel sys-
tems a constant number of nodes is allocated to an application,
nodes may become idle or underutilized when the application‘s
processing power requirements vary over the course of execution.
Therefore, one may increase the utilization of computing re-
sources during program execution by adapting the allocation of
computing nodes to the applications’ computation needs. For
example, the amount of computation performed by an LU factori-
zation application decreases at each iteration of the algorithm.
The number of allocated nodes may thus be decreased over the
course of execution without significantly increasing the execution
time of the parallel application.

The DPS parallelization framework [7] provides the function-
ality required to modify the allocation of processing nodes to an
application at runtime. However, taking the right decisions re-
quires a priori knowledge about the dynamic efficiency of the
application, i.e. its utilization of resources as a function of time.
Detailed simulations of the application can provide means of cap-
turing that information, together with information about the effec-

tiveness of the chosen problem decomposition and allocation of
processing nodes.

In order to obtain information on the dynamic efficiency and
to simulate the influence of parallel application parameters, we
integrated our simulator within the DPS parallelization frame-
work. Simulating a parallel application by executing the applica-
tion code at least partially allows to reconstruct its exact behavior
and to predict its parallel running time, given a representation of
the running time of each of its tasks. Since the DPS runtime code
is executed during the simulation, its dynamic features such as the
dynamic allocation of processing nodes can also be simulated.
Therefore, the impact of different parallelization and deployment
strategies on the application running time can be evaluated.

Purely analytical models for the performance prediction of
parallel programs are generally tailored to a specific application
 [11] or to a class of parallel programs, such as fork-join applica-
tions [14]. Other models have two levels of hierarchy [1], with a
higher-level component representing the task-level behavior of
the program and a lower-level component representing individual
task execution times. These models describe the task-level behav-
ior as a task graph [1, 13] or as a timed Petri net [3]. Approaches
for the purpose of modeling individual task execution times in-
clude measurements [3, 11], stochastic models [13, 14] and the
association of an application signature and a machine profile [16]

MPI-SIM [15] and its extension COMPASS [4] are two simu-
lators that predict the performance of MPI programs by executing
the application. The simulation functionality is provided by a
modified library that implements the most common MPI calls.
Both MPI-SIM and COMPASS use direct execution [6] to derive
computation times. Direct execution does not require any modifi-
cation to the application. However, it has the drawbacks that the
simulation must run on the same hardware that runs the parallel
application and that the whole problem must fit into the memory
of a single computing node, thus limiting the size of applications
that can be simulated. MPI-SIM and COMPASS alleviate these
problems through parallel simulation, which however requires the
availability of the parallel machine for the simulation.

We follow a mixed approach, where the task-level behavior
and task execution times are derived through the use of partial
direct execution. Computations that have no impact on the task-
level behavior of the application may be replaced by duration
estimates. In addition, we may also reduce memory usage by
avoiding data structure allocations. The direct execution draw-
backs are therefore considerably reduced. Moreover, unlike other
simulators which ignore network delays [2, 14] or assume that

bschaeli
Text Box
20th International Parallel and Distributed Processing Symposium (IPDPS)5th International Workshop on Performance Modeling, Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-PDS'06), April 25-29, Rhodes Island, Greece, 2006

network contention is inexistent [4, 15], we take network over-
heads into account by using a simple model and a small set of
platform-specific parameters. As a result, our simulator is port-
able and can accurately simulate the execution of parallel pro-
grams on a desktop computer.

The problem of dynamically allocating resources to parallel
applications has been previously considered [5, 10, 17]. However,
according to our knowledge the simulator we propose is the first
one which predicts the performance of real adaptive applications,
i.e. applications whose mapping to computation nodes may vary
over time during program execution.

2. The Dynamic Parallel Schedules framework

DPS applications are defined as directed acyclic graphs of op-
erations [7]. Its fundamental types of operations are the leaf, split,
merge and stream operations. The inputs and outputs of the op-
erations are strongly typed data objects. Figure 1 illustrates the
flow graph of a simple parallel application. The flow graph de-
scribes the asynchronous flow of data between operations.

Split Merge

ComputeData Init Final

ComputeData

ComputeData

Leaf
Figure 1. Flow graph describing data distribution (split), parallel

processing, and collection of results (merge)

The split operations are used to divide the incoming data ob-
jects into smaller objects representing subtasks. These subtasks
are subsequently sent to the next operations specified by the flow
graph (e.g. ComputeData in Figure 1). The merge operations are
used to collect and aggregate the results into a single output ob-
ject. Once all the results corresponding to the data objects origi-
nally sent by a split operation have been collected, the resulting
data object is sent out. Successive data objects arriving at the en-
try of a split operation yield successive new instances of the split-
merge operation pair.

The stream operations combine a merge operation with a sub-
sequent split operation. Instead of waiting for the merge operation
to receive all its data objects before allowing the subsequent split
operation to send new data objects, the stream operation can
stream out new data objects based on groups of incoming data
objects. By refining the synchronization granularity, stream op-
erations allow programmers to maximize the pipelining of parallel
operations, thereby ensuring a maximal utilization of the underly-
ing hardware.

All operations are extensible constructs, i.e. the developer pro-
vides his own code to control how processing requests are split
into sub-requests, how the data is distributed and processed, and
how processed sub-results are merged into one result. The data
objects circulating in the flow graph may contain any combina-
tion of simple types or complex types such as arrays or lists.

Operations within a flow graph are carried out within threads.
A thread in DPS is a logical construct representing an execution
environment for a set of operations. DPS threads are mapped onto
operating system threads, called DPS execution threads, although
not necessarily in a one-to-one relationship. For instance several

DPS threads residing on a single processor node may share a sin-
gle DPS execution thread.

The selection of the DPS thread on which an operation is to be
executed is accomplished by evaluating at runtime a user defined
routing function attached to the corresponding directed edge of
the flow graph. Communication patterns such as neighborhood
exchanges can easily be specified by using relative thread indices.

By transferring data objects as soon as they are generated and
by maintaining queues of arriving data objects, the execution of
DPS applications is fully pipelined and asynchronous. Data object
queues are associated with the thread that contains the operations
that will consume them. This macro data flow behavior enables
automatic overlapping of communications and computations. A
flow control mechanism can be used to limit the number of data
objects in circulation between a split and the corresponding merge
operation. This prevents split and stream operations from filling
the data object queue of the destination threads.

The deployment of a DPS application is done at runtime, and
relies on a remote launching mechanism to create a new applica-
tion instance on every node that will host a DPS thread. In each
application instance, a DPS thread manager handles thread crea-
tion and destruction requests, and delivers incoming data objects
to their destination thread.

The flow graph together with its threads and its routing func-
tions forms a parallel schedule. A parallel schedule describes a
fine to medium-grained parallel application. Its operations repre-
sent the small subtasks that are executed in a pipeline-parallel
manner according to the flow graph. The DPS communication
layer, hidden from the application programmer, relies on TCP
sockets, and uses an optimized data serialization scheme that
minimizes memory copies.

3. Structure of the DPS simulation system

The DPS flow graph only gives a logical description of the
parallel behavior of an application. The simulation of a parallel
application requires additional run time information to be able to
precisely reconstruct the actual execution. The number of proc-
essing nodes and threads must be known at every moment, along
with the functions that route data objects onto threads, and the
number of data objects sent by each split or stream operation.

Since the simulator is integrated within the DPS parallelization
framework, it has access to all the parameters that have an impact
on the execution of a parallel application by directly executing
code from both the application and the DPS runtime.

The simulation of the deployment of DPS threads onto com-
puting nodes is carried out as follows. A modified remote launch-
ing mechanism instantiates a new DPS thread manager for each
application instance that would have been launched in a real exe-
cution. Simultaneously, the simulator maintains a virtual repre-
sentation of each computing node on which the application is
deployed. The TCP network layer is replaced by a simulated net-
work layer, which handles all communications between the vir-
tual nodes. Since the network layer is fully simulated, the mecha-
nisms that create and destroy DPS threads may be used without
any modification. Hence, the simulation of an application uses the
same number of DPS thread managers and the same deployment
scheme as the real execution. The only difference is that all thread

managers are running within the simulator. The simulator is there-
fore able to reconstruct the actual application execution by keep-
ing track of which thread, and thus which virtual node, executes
which operation.

DPS operations may be suspended during their execution, e.g.
when merge and stream operations wait for data objects that did
not yet arrive, or due to the DPS flow control mechanism. We
therefore subdivide operations into atomic steps, i.e. operation
parts which execute without being suspended. An atomic step
starts when another atomic step is completed, and ends when a
data object is posted or when an operation is suspended or termi-
nates. Since data transfers cannot be suspended, they are also
assimilated to atomic steps.

T1

T2

S1 S2

O1

O2

T1’

T2’

M2

Split

Op1

Merge

M1 Node 0

Node 1

Node 2

Transfers between
nodes 0 and 1

Transfers between
nodes 0 and 2

S M

a)

b)

S1, S2: output data object generation time in split
S: total duration of split operation
O1, O2: leaf operation processing time
T1, T2, T1’, T2’: transfer time of data objects
M1: aggregation time of result from O1 in merge
M2: aggregation of last result and final processing
M: total duration of merge operation

Op2

Figure 2. Timing diagram for the parallel execution of a flow

graph deployed on three nodes with a split operation sending two
data objects. Each block represents an atomic step.

 Figure 2 shows the atomic steps of the execution of a simple
flow graph on 3 nodes, one node running the split and merge op-
erations, the other two running the leaf operations. The split op-
eration is composed of the atomic steps S1 and S2, which respec-
tively generate the data object transfers T1 and T2. Each leaf op-
eration is made of a single atomic step (O1 and O2). The resulting
data object transfers T1’ and T2’ trigger the execution of the
atomic steps M1 and M2 within the merge operation. The gap
between M1 and M2 indicates that the merge operation is sus-
pended, waiting for the data object (result) created by the leaf
operation O2 on node 2.

The overlap of communications and computations is maxi-
mized by running different operations on distinct DPS execution
threads, allowing for example a merge operation to receive and
process data objects while a leaf operation is running on the same
processor. In order to accurately measure execution times during
a direct execution simulation, the simulator has to control the
activation of execution threads and ensure that only one of them
is active at any given moment. This is done by running the simu-
lator code in an operating system thread (called simulator thread)
distinct from the DPS execution threads. At points within the DPS
framework code that terminate an atomic step, notifications in-
form the simulator that an atomic step has been carried out and
that the corresponding running time needs to be recorded. The
running DPS execution thread is then suspended and control is
passed to the simulator thread (Figure 3).

Each atomic step is recorded and stored into the simulator with
a measurement or an estimate of its duration. When the simulator
thread is running, it looks for the recorded atomic step that com-
pletes next, and advances accordingly its simulation clock. The
DPS execution thread associated to the completed recorded
atomic step is resumed, and the simulator thread is suspended. If
the completed atomic step represents a data object network trans-
fer, the resumed execution thread is the one that received the
transferred data object. If the atomic step represents a computa-
tion, the resumed execution thread is the one running the corre-
sponding operation.

DPS execution threads Simulator thread

Operation suspended or terminated

Recorded atomic step duration elapsed
Figure 3. Alternating DPS operation direct execution and simu-

lator execution steps.

After execution of the next atomic step by the DPS execution
thread, control is returned to the simulator thread in order to re-
cord the atomic step’s running time and advance the simulation
clock. Therefore, all the atomic steps are executed sequentially
and their contribution to the application’s running time can be
correctly recorded.

 Figure 4 shows the temporal execution of the simulation for
the flow graph shown in Figure 2. The simulator thread first trig-
gers the execution of the split operation (split1), which runs until
the first data object is posted and the running time record of
atomic step S1 is queued in the simulator. Control is passed to the
simulator thread, which increments its simulation clock until the
simulation time corresponding to S1 has elapsed. Then, the DPS
execution thread is resumed. It first queues the data object trans-
fer T1 in the simulator, and resumes execution of the split opera-
tion (split2) until the second data object is posted and the atomic
step S2 is queued in the simulator. Although T1 was queued be-
fore S2, both atomic steps run in parallel in respect to their simu-
lation time. When S2 completes, control is transferred to the DPS
execution thread which immediately terminates the split operation.
The DPS execution thread then passes control to the simulator
thread, and is suspended waiting for another data object to proc-
ess. When, within the simulator, the recorded time associated
with the data object transfer T1 elapses, the associated data object
is delivered to the DPS execution thread running on virtual node 1.
Control is passed to the DPS execution thread, which triggers the
leaf operation Op1.

The upper part of the timing diagram in Figure 4 shows that
two DPS execution threads never run simultaneously. The simula-
tor thread also never overlaps with DPS execution threads. In
respect to simulation time, operations are correctly overlapping:
the timing diagram drawn by the execution of the simulator
thread (i.e. with the dashed parts removed) is identical to the tim-
ing diagram shown in Figure 2.

Since the simulation library is integrated into DPS, the simu-
lated application is obtained by simply activating a compilation
flag. The real and simulated applications may thus be run identi-
cally, and the command line arguments (which may for instance
specify the number of nodes to be used or the decomposition

granularity) will have the same effect on both versions of the pro-
gram.

4. The simulator’s system model and its assumptions

In the previous section, we have shown that the parallel struc-
ture of the application can be recreated within the simulator,
given the running time of each atomic step. Since only a single
operating system thread is active at any given time, the processing
time of each atomic step can be recorded through direct execution,
and be used as its optimistic running time, i.e. the running time
when assuming that there is no CPU or network contention.

For programs whose parallel execution pattern does not de-
pend on the content of the computed data, the prohibitive running
time of direct execution simulation may be reduced by passing an
estimate of the computation time instead of performing the actual
computations. We refer to this technique as partial direct execu-
tion. The time estimate is simply a number of microseconds, and
may thus come from any source, i.e. either deduced from previous
executions, computed as a function of some parameters, or gener-
ated using any other model (see the related work in section 1). It
is also possible to combine direct execution and partial direct
execution. For parallel programs that perform the same operations
repeatedly, we may measure the running times of the first n in-
stances of an operation, and reuse the averaged measure for the
remaining instances.

By avoiding time measurements during program execution, the
hardware running the simulation no longer impacts the predicted
running time of the simulated application’s operations. The use of
partial direct execution therefore enables the simulation to run on
a computer that is different and potentially less powerful than the
one used for the parallel computations.

The optimistic time for data object transfers are estimated us-
ing the traditional formula

b
slt += ,

where l is the network latency, b the network bandwidth, and s the
size of the transferred data object. Although the formula is simple,

it is very accurate in predicting the TCP/IP transfer time of a data
object between two processing nodes and has therefore been
widely used [3, 11]. The latency and bandwidth parameters are
constant and specific to the hardware onto which the parallel ap-
plication is running. They must therefore be measured or esti-
mated separately for each target parallel machine. The size of the
data objects is computed at runtime, using a modified version of
the built-in DPS data object serializer. Instead of doing the actual
serialization, the modified serializer only counts the number of
bytes of the data object using the size description of the data
structures it contains, without performing any memory copies.
Hence, the memory of data structures does not need to be allo-
cated. When partial direct execution is used and the content of the
application’s data can be ignored, allocating large data structures
may be avoided.

Modeling the duration of the individual operations and data
object transfers of a DPS application decreases the running time
and memory consumption of the simulated application. It also
leads to a parametric model of the application [11]. Since para-
metric models allow the different performance factors to be iso-
lated from one another, they are very convenient for studying the
behavior of a system. One may modify the bandwidth and latency
parameters to evaluate the benefits of a faster network, or reduce
the duration of various operations to identify the ones that should
be optimized. The simulator then becomes a powerful tool for the
optimization of parallel applications.

Given the topology of the network connecting the virtual
nodes and the state of the current data object transfers, the simula-
tor predicts their completion time by taking network contention
into account. The simulator assumes that all incoming, respec-
tively outgoing data transfers for a given node receive an equal
share of the available bandwidth. The communication network
between the nodes is assumed to have a star topology, where each
node has a full duplex link connecting it to a central full crossbar
switch which is never a bottleneck.

Since computations and communications may overlap, the
processing power needed to handle communications also needs to
be taken into account. Receiving data objects induces more inter-

 Node 0

Node 1

Node 2

Split1 Split2 Split

Op1

Op2

Op1

Op2

Merge1

T1

T2

S1 S2

O1

O2

T1’

T2’

M1

Merge2

M2 Virtual node 0

Virtual node 1

Virtual node 2

Simulation time
Execution time

Transfers between
nodes 0 and 2

Transfers between
nodes 0 and 1

Simulator
thread

te=0

ts=0

Merge

DPS exec
thread

DPS exec
thread

DPS exec
thread

Figure 4. Timing diagram of the simulation of the flow graph shown in Figure 2. The execution of DPS operations is shown in the

upper part and the management of the simulated time in the lower part. Atomic steps within DPS operations are executed one by one,
only when the simulator thread is suspended.

rupts and more memory copies than sending data objects, and is
thus more costly. Moreover, we noticed that the consumed proc-
essing power depends on the number of outgoing and incoming
communications. Since the simulator handles all communications,
it knows at every time point how many concurrent transfers are
carried out by each processing node, and may thus compute the
amount of processing power still available to the concurrently
running operations.

We also assume that the processing power not used for com-
munications is shared evenly among all running operations, and
that no memory swapping occurs. Similarly to the bandwidth and
latency measurements, the required processing power for com-
munications must be measured separately and provided to the
simulator. In all cases, the characterization of these communica-
tion and processing parameters is independent of the simulated
applications, and thus needs to be carried out only once.

5. Test application

In order to measure the accuracy of our simulator, we choose a
parallel block LU factorization application [8]. The block-based
LU factorization relies on the recursive decomposition of the ma-
trix. Consider a matrix A of size n x n, with block size r, that is to
be factorized. The matrix A is split as follows:

n-rr
rn

r
BA

AA
A

21

1211

−⎥
⎦

⎤
⎢
⎣

⎡
=

This matrix is decomposed as

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

Y
TU

XL
L

BA
AA

A
0

0 1211

21

11

21

1211

According to this decomposition, the LU factorization can be
realized in three steps.

Step 1. Compute the rectangular LU factorization with partial
pivoting.

11
21

11

21

11 U
L
L

A
A

⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

 Step 2. Compute T12 by solving the triangular system.
 121112 TLA ⋅=
This is the operation performed by the trsm routine in BLAS

 [12]. Carry out row flipping according to the partial pivoting of
step 1.

Step 3. To obtain the LU factorization of the matrix A, X must
be lower triangular and Y upper triangular. We can define A’ =
X · Y, and iteratively apply the block LU factorization to A’ until
A’ is a square matrix of size r.

1221

1221

' TLBYXA
YXTLB
⋅−=⋅=

⋅+⋅=

In our implementation, we distribute the matrix onto the
threads in column blocks of size r x n. The flow graph for the LU
decomposition is shown in Figure 5. The recursion on the matrix
factorization is obtained by replicating a part of the graph (in gray)
once for each LU factorization level. The most expensive part of
the LU factorization presented here is the block-based matrix

multiplication L21·T12, both from the computation and the com-
munication perspectives. The multiplication is performed using
blocks of size r x r. All input blocks for the multiplication are
initially collected within the stream operation (c). The blocks
from L21 are available on the local DPS thread within which the
merge operation is executing, and the blocks from T12 are trans-
ferred from the local thread states where the preceding trsm op-
erations (b) were carried out. The data objects sent to each of the
matrix block multiplications (d) contain two matrix blocks of size
r x r. The routing function is designed such that multiplications
are evenly distributed on all threads. Each matrix block multipli-
cation yields a matrix block of size r x r that is sent to the next
subtraction operation (e).

(a)
(b)

(c)

 (b)
(e)

 (f) (c)
(g)

 (g) (f)
(d) (d) (h) (e)

Figure 5. Flow graph for LU factorization. The gray part is re-

peated for every column of blocks in the matrix. (a) LU factoriza-
tion of top left block A11 (step 1); (b) solve in parallel the triangu-
lar system in order to compute T12 for all other column blocks and
perform row flipping (step 2); (c) collect notifications of finished
triangular system solve and stream out multiplication requests; (d)
parallel block-based matrix multiplication for L21·T12; (e) subtract
result of multiplication from B in parallel; (f) collect notifications
for end of multiplications (step 3), perform next level LU factori-
zation as soon as first column block is complete, and stream out

triangular system solve requests as other column blocks complete;
(g) perform row flipping on previous column blocks; (h) collect

row exchange notifications for termination.

6. Modifying the application’s flow graph

In order to test our simulator in different situations, we explore
the impact of varying the decomposition block size, of modifying
the LU factorization flow graph and of using the flow control
mechanism of DPS.

In the flow graph of Figure 5, the use of the stream operations
(c) and (f) increases the pipelining of the application, i.e. the
number of operations having the potential of running concurrently.
Within the pipelined application, trsm and LU operations are per-
formed simultaneously with matrix multiplications and their asso-
ciated data transfers. If we replace the stream operations by
merge-split pairs of operations, these act as barrier synchroniza-
tions and no pipelining occurs. We refer to this less efficient im-
plementation as the basic flow graph, as opposed to the pipelined
flow graph described in Figure 5.

Varying the block size r used for the decomposition impacts
the number of operations, and consequently the computation to
communication ratio (smaller blocks yield a lower computation to
communication ratio). In the pipelined flow graph, the value of r
also influences the depth of the pipeline, and thus the amount of
overlapping that can be achieved.

DPS threads queue incoming data objects until they can be
processed. Sending all multiplication requests at once thus fills
the queues and delays the processing of the requests sent by sub-

where A11 is a square block
of size r x r.

where L11 and U11 are lower, resp.
upper triangular matrices.

sequent iterations, thereby reducing the pipelining potential. Ap-
plying the flow control capabilities of DPS on the stream opera-
tions that generate the multiplication requests limits the number
of requests awaiting processing for each iteration, enabling opera-
tions belonging to successive iterations to be interleaved, thereby
improving pipelining (Figure 6).

 1
 2

 1
 2 2

 1

 3

 2
 1

 3

 1
 3

 1

 3 3

 3
 2

 1
 2

 1
 2

 1
 2

 1

 Thread

 Thread

Iteration 1
Iteration 2

Iteration 3

With flow control

Without flow control

Figure 6. Improved interleaving thanks to the flow control
mechanism enables iterations 2 and 3 to be started earlier.

Another modification on the LU factorization flow graph con-
sists in further parallelizing matrix block multiplications by de-
composing blocks of size r x r into row blocks of size s x r and
column blocks of size r x s. We use a flow graph (Figure 7) that
(a) distributes the column blocks of the second matrix to the proc-
essing nodes, which (b) store them locally. Each sub-block multi-
plication can then be performed by (d) sending the line blocks of
the first matrix to the processing nodes, which (e) multiply them
with the locally stored column blocks. The compositional nature
of DPS allows us to replace operation (e) in Figure 5 by the flow
graph shown in Figure 7.

 (a) (b)
 (c) (d)

 (e) (f)

Figure 7. Flow graph for matrix multiplication. (a) Store first
matrix, and send column blocks of second matrix; (b) store col-
umn blocks; (c) collect notifications; (d) send line blocks of first
matrix; (e) multiply received line block with column block stored

on thread; (f) collect multiplication results and build resulting
matrix.

Since the number of block multiplications decreases at each it-
eration of the LU factorization, the application processing power
requirements decrease over time and the number of allocated
nodes may therefore be dynamically reduced. The impact of
threads removal on the running time depends on the number of
removed threads and on the iteration step of the LU decomposi-
tion on which they are removed.

By combining one or several of the proposed modifications
and observing their impact on the parallel application's running
time, we verify how well the different execution parameters are
taken into account by the simulator’s network and processing
models, and how precisely it reproduces the actual behavior of the
parallel application.

7. Improving simulation times and portability
through partial direct execution

Let us first present results describing the simulator’s perform-
ance and portability. Table 1 displays the time required to per-
form the simulation of the LU factorization of a 2592x2592 ma-
trix, with the real application running on eight nodes, using the

basic flow graph and the decomposition granularity r=216. For
reference, the real parallel execution lasts 62.3s, and the real se-
rial execution lasts 185.1s. The simulator’s overhead when direct
execution is used is 4.3%.

We implement partial direct execution (PDEXEC) by simply
replacing calls to the matrix multiplication, LU, trsm, and row
flipping functions with simulator notifications incorporating the
corresponding benchmarked times. We then remove the memory
allocation for the initial matrix (NOALLOC), together with mem-
ory copies performed in the corresponding DPS operations. The
final simulation is almost ten times faster than the actual parallel
execution on the same hardware and uses only 14MB of memory.
The predicted running time changes by only -1.3% compared
with the direct execution simulation. This optimized simulator
mode is used for all the simulations shown in the next section.

UltraSparc II 440Mhz (Solaris)

Running
time [s]

Memory
usage
[MB]

Predicted
running
time [s]

Real application (8 nodes) 62.3 N/A
Real application (1 node) 185.1 108 N/A
Direct execution (sim) 193.0 127 60.7
PDEXEC (sim) 9.1 124 60.3
PDEXEC NOALLOC (sim) 6.5 14 59.9
Pentium 4 2.8GHz (Windows)
Direct execution (sim) 29.7 127 N/A
PDEXEC (sim) 2.5 124 60.0
PDEXEC NOALLOC (sim) 1.6 14 59.9

Table 1. Comparison of simulation times and memory consump-
tions in different simulation settings, and corresponding predicted

running time. The reference running time is written in bold.

 Table 1 displays simulation results for two different platforms,
assessing the portability of our simulator. Since the Pentium 4
processor is much faster than the UltraSparc II, prediction results
based on direct execution are not representative. However, when
partial direct execution is used, the faster processor has nearly no
impact on the predicted running time of the LU factorization ap-
plication. Therefore, the partial direct execution technique makes
the simulation portable without sacrificing accuracy.

8. Validating the simulator

We validate the simulator by comparing the measured and
predicted running times of the parallel LU factorization applica-
tion using the parallelization and pipelining flow graph variations
discussed in section 6. All the measurements shown below con-
sider the LU factorization of a 2592x2592 matrix carried out ei-
ther on four or on eight processing nodes. The machines are Sun
workstations with a single 440 MHz UltraSparc II processor con-
nected to a full crossbar switch through a Fast Ethernet network.
Hereinafter, we refer to the pipelined flow graph as P, the use of
flow control as FC, and to the flow graph with parallel sub-block
multiplications as PM. In order to compare the different paralleli-
zation strategies, we use the relative performance improvement
metric, defined as the execution time of the basic flow graph (ref-
erence time) over the execution time of the program incorporating
one or several of the proposed variations.

In Figure 8, we show the effects of the various optimizations.
The reference time (259.4s) is obtained by splitting the matrix in
four blocks of 648 columns, distributed on the four available
nodes. We see that although the parallel sub-block multiplications
(PM), pipelining (P) and flow control (FC) optimizations bring
some improvements (around 3%), they are negligible compared
with the gains that are obtained by simply changing the decompo-
sition granularity. Splitting the matrix into sixteen blocks (r=162)
distributed evenly among the processing nodes yields the shortest
measured and predicted running time, respectively 72.5s and
75.5s. The improvement predicted by the simulator is within a
few percents of the measured improvements.

 Figure 9 shows the effects of the parallel sub-block multiplica-
tions (PM), pipelining (P) and flow control (FC) modifications
when the matrix is split into eight block columns (i.e. two per
node) instead of four, and the reference time is the measured run-
ning time when r=324 in Figure 8. Due to the well balanced dis-
tribution of block multiplications within the reference setup, the
increased communication requirements of transmitting sub-blocks
for the parallel sub-block multiplications (PM) slows down the
execution instead of accelerating it. On the other hand, pipelining
(P) and flow control (FC) slightly improve the performances.

When we increase the number of processing nodes to eight
nodes, the pipelined flow graph (P) and the flow control (FC)
improvements become more significant (Figure 10). The optimal
block size for the LU factorization is also influenced by the paral-
lelization strategy. In all cases, pipelining considerably improves
the performance with respect to the basic flow graph, and the
conjunction of pipelining and flow control further improves the
results.

We now consider the impact of the removal of multiplication
threads during execution. In our test case, the 2592x2592 matrix
is split into eight column blocks distributed onto four nodes
(r=324), and the computation is performed using the basic flow
graph, allowing to clearly separate the different iterations.
 Figure 11 shows the dynamic efficiency (i.e. the efficiency at
each iteration step) of the application. During the first iteration,
four nodes are about 50% more efficient than eight nodes (60.2%
vs. 37.6%). The relative efficiency of 4 nodes versus 8 nodes in-
creases up to iteration 6 where 4 nodes have twice the efficiency
of 8 nodes, i.e. iteration 6 has the same running time on 4 nodes
and on 8 nodes. Therefore, removing nodes during execution
should not have a large impact on the total computation time.

This is confirmed by measuring the total execution time of the
application for different thread removal strategies (Figure 12).
Using eight nodes for the whole computation or only for the first
iteration yields almost the same running time, and being able to

deallocate four nodes after the first iteration greatly increases the
dynamic efficiency of the application (Figure 12, graph "kill 4
after iteration 1"). Since the first iteration accounts for approxi-
mately 25% of the parallel running time, the service rate of the
cluster can be significantly increased if the deallocated compute
nodes are assigned to other applications.

Impact of modifications on running time (4 nodes)
Reference time: 259.4s (r=648)

P+FCP+PMP

r=216 r=162 r=108

PM

r=324

P+PM+FC

1

2

3

4

Pe
rf

or
m

an
ce

im

pr
ov

em
en

t Measurement
Prediction

Figure 8. Measured and simulated variation of computation time

for the proposed modifications.

Impact of modifications (4 nodes)
Reference time: 101.8s (r=324)

P+PM+FC

P+FCP
P+PMPM

0.85

0.9

0.95

1

1.05

1.1

Pe
rfo

rm
an

ce

im
pr

ov
em

en
t

Measurement
Prediction

Figure 9. Variation of computation time caused by parallel sub-

block multiplications, increased pipelining and flow control.
Prediction errors are below 5%.

Impact of decomposition granularity (8 nodes)
Reference: basic flow graph, r=324 (84.2s)

0.4

0.8

1.2

1.6

2

81 108 162 216 324
Block size r

Pe
rf

or
m

an
ce

im

pr
ov

em
en

t

Basic
Basic (sim)
P
P (sim)
P+FC
P+FC (sim)

Figure 10. Impact of decomposition granularity on different

pipelining strategies.

Dynamic efficiency of LU factorization

10%
20%
30%
40%
50%
60%
70%
80%

1
68.2s

2
52.9s

3
39s

4
27s

5
17.3s

6
9.3s

7
3.9s

8
0.6s

Iteration and iteration running time

E
ffi

ci
en

cy

8 threads
8 threads sim
4 threads
4 threads sim
kill 4 after it. 1
kill 4 sim

Figure 11. The parallel computation of LU iterations becomes
less efficient over time. Removing threads during execution in-

creases the efficiency of the subsequent iterations.

Impact of removing multiplication threads

85
90
95

100
105

4 threads 8 threads 8 threads, kill
4 after it. 1

8 threads, kill
4 after it. 4

8 threads, kill
2 after it. 2 +
2 after it. 3

R
un

ni
ng

 ti
m

e
[s

]

Measurement
Prediction

Figure 12. Running times of dynamic thread removal strategies.

Prediction errors (168 measurements)

0

10

20

30

40

-16% -12% -8% -4% 0% 4% 8% 12% 16%

N
b

of
 p

re
di

ct
io

ns

Figure 13. Histogram of prediction errors

In respect to the simulator, Figure 13 shows its prediction ac-
curacy for the 168 measurements carried out for establishing the
results shown in the present section. 71.4% of all predictions are
within ±4% accuracy, 81.6% are within ±6% accuracy, and more
than 95% are within ±12% prediction accuracy.

9. Conclusions and future work

Dynamically allocating and deallocating compute nodes dur-
ing the execution of parallel applications is a promising technique
for improving the utilization of cluster resources. We introduce
the concept of dynamic efficiency which expresses the resource
utilization efficiency as a function of time. In order to obtain in-
formation about the performance and the dynamic efficiency of
parallel programs, we propose a simulator built on top of the DPS
framework.

In the DPS framework, the parallel structure of an application
is specified by a flow graph comprising operations running on
DPS threads, routing functions, and data objects moving between
operations. The flow graph is constructed at run time and its DPS
threads are dynamically deployed onto compute nodes, enabling
their dynamic allocation and deallocation.

The extended DPS framework enables the simulation of a DPS
application by running all the DPS threads within a single appli-
cation instance. The simulator coordinates and synchronizes the
execution of DPS threads. Operation duration, data transfers, and
communication patterns may be derived by direct execution.

The running time, memory requirements and portability of the
simulation can be improved by using partial direct execution, i.e.
by only executing the parts of the flow graph that send and re-
ceive data objects and by predicting the running time of the com-
putations.

We verify the prediction accuracy of our simulator by applying
several parallelization strategies to an LU factorization applica-
tion. The LU factorization application also shows that the simula-
tor is able to accurately predict running times and dynamic effi-
ciency when deallocating compute nodes at different time points
of the program execution.

In the future, we intend to extend the simulation framework in
order to simulate a cluster server running concurrently multiple,
possibly different applications whose allocations of compute
nodes vary dynamically over time.

References
[1] V. S. Adve, M. K. Vernon, Parallel program performance pre-

diction using deterministic task graph analysis, ACM Transac-
tions on Computer Systems (TOCS), Vol. 22 , No. 1, pp. 94-
136, February 2004

[2] V. D. Agrawal, S. T. Chakradhar, Performance estimation in a
massively parallel system, Proc of Supercomputing '90, pp 306-
313, Nov. 1990

[3] C. Anglano, Predicting parallel applications performance on
non-dedicated cluster platforms, Proc. 12th Int’l Conference on
Supercomputing, Melbourne, Australia, pp. 172-179, 1998

[4] R. Bagrodia, E. Deeljman, S. Docy, T. Phan, Performance pre-
diction of large parallel applications using parallel simulations,
Proc. 7th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP’99), pp. 151-162 , 1999

[5] W. Cirne, F. Berman, A model for moldable supercomputer jobs,
Proc. 15th Int’l Parallel and Distributed Processing Symposium,
April 2001

[6] R. Covington, S. Dwarkadas, J. Jump, J. Sinclair, S. Madala,
The efficient simulation of parallel computer systems, Interna-
tional Journal in Computer Simulation, Vol. 1, 1991

[7] S. Gerlach, R. D. Hersch, DPS - Dynamic Parallel Schedules,
Proc. 8th Int’l Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2003), 17th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS'03), Nice, France, pp. 15-24, April 2003

[8] G. H. Golub, C. F. van Loan, Matrix Computations, The Johns
Hopkins University Press, pp. 94-116, 1996

[9] R. Gruber, V. Keller, P. Kuonen, M.-Ch. Sawley, B. Schaeli, A.
Tolou, M. Torruella, T.-M. Tran, Intelligent GRID Scheduling
System, Proc. 6th Int’l Conf. on Parallel Processing and Applied
Mathematics (PPAM’05), Poznan, Poland, Sept. 2005

[10] L. V. Kale, S. Kumar, J. DeSouza, A malleable-job system for
timeshared parallel machines, 2nd IEEE/ACM Int’l Symposium
on Cluster Computing and the Grid (CCGRID’02), pp. 215-222,
May 2002

[11] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, M. Gittings, Predictive performance and scalabil-
ity modeling of a large-scale application, Conference on High
Performance Networking and Computing, Proc. 2001
ACM/IEEE Conference on Supercomputing, Denver, Colorado,
pp. 37-37, 2001

[12] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic
Linear Algebra Subprograms for FORTRAN usage, ACM Trans.
Math. Soft., Vol. 5, pp. 308-323, 1979

[13] D.-R. Liang, S. K. Tripathi, On performance prediction of par-
allel computations with precedent constraints, IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 11, No. 5, pp.
491-508, May 2000

[14] G. D. Peterson, R. D. Chamberlain, Stealing cycles: Can we get
along?, Proc. 28th Hawaii Int’l Conf. on System Sciences, Vol.2,
pp. 422-431, Jan. 1995

[15] S. Prakash, R. Bagrodia, MPI-SIM: Using Parallel Simulation
to Evaluate MPI Programs, Proc. 1998 Winter Simulation Con-
ference, 1998

[16] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, A.
Purkayastha, A framework for performance modeling and pre-
diction, Proc. 2002 ACM/IEEE conference on Supercomputing,
pp. 1-17, Baltimore, Maryland, 2002

[17] G. Utrera, J. Corbalan, J. Labarta, Implementing malleability on
MPI jobs, Proc. 13th Int’l Conf. on Parallel Architecture and
Compilation Techniques (PACT’04), pp. 215-224, Oct. 2004

