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Abstract 

Dynamically allocating computing nodes to parallel applications is a promising technique for improv-

ing the utilization of cluster resources. Detailed simulations can help identify allocation strategies and 

problem decomposition parameters that increase the efficiency of parallel applications. We describe a 

simulation framework supporting dynamic node allocation which, given a simple cluster model, predicts 

the running time of parallel applications taking CPU and network sharing into account. Simulations can 

be carried out without needing to modify the application code. Thanks to partial direct execution, simula-

tion times and memory requirements are reduced. In partial direct execution simulations, the applica-

tion's parallel behavior is retrieved via direct execution, and the duration of individual operations is ob-

tained from a performance prediction model or from prior measurements. Simulations may then vary 

cluster model parameters, operation durations and problem decomposition parameters to analyze their 

impact on the application performance and identify the limiting factors. We implemented the proposed 

techniques by adding direct execution simulation capabilities to the Dynamic Parallel Schedules paral-

lelization framework. We introduce the concept of dynamic efficiency to express the resource utilization 

efficiency as a function of time. We verify the accuracy of our simulator by comparing the effective run-

ning time, respectively the dynamic efficiency, of parallel program executions with the running time, re-
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spectively the dynamic efficiency, predicted by the simulator under different parallelization and dynamic 

node allocation strategies. 

Keywords: Adaptive parallel application simulation, performance prediction, dynamic efficiency, 

sensitivity analysis, partial direct execution. 

1. Introduction 

Recent studies show that many parallel applications do not fully use the available hardware [7], [12]. 

Although some applications are inherently difficult to parallelize efficiently, many other applications 

could be improved by using better parallelization strategies and problem decomposition parameters. 

Moreover, most parallel job scheduling systems allocate a constant number of compute nodes to an appli-

cation, causing nodes to become idle or underutilized when the application’s processing power require-

ments vary over the course of execution. Adapting the allocation of nodes to the applications’ computa-

tion needs may thus further increase the utilization of computing resources during program execution. 

The choice of an efficient problem decomposition may depend on the input data of the application, as 

well as on the number of available nodes. Similarly, taking good decisions about how and when to modify 

the allocation of compute nodes requires a priori knowledge about the dynamic efficiency of the applica-

tion, i.e. its utilization of computation resources as a function of time. Many test runs must therefore be 

performed to obtain the necessary information. This testing phase can be time consuming on busy produc-

tion parallel systems, since jobs must wait until processing time becomes available. Being able to use a 

desktop computer to produce detailed simulations and provide information about the dynamic efficiency 

as well as the effectiveness of the chosen problem decomposition can therefore reduce the time and cost 

of parallel application development. 

This paper describes the simulation capabilities that have been integrated into the Dynamic Parallel 

Schedules (DPS) parallelization framework [9]. The integration of the simulator within the framework 

enables simulating a parallel application by fully or partially executing the application code. This enables 
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reconstructing its exact behavior. Since the simulator also executes the DPS runtime code, features such 

as the dynamic allocation of processing nodes or the production of an execution trace are also simulated. 

The problem of dynamically allocating resources to parallel applications has been previously consid-

ered [6], [13], [20]. However, according to our knowledge this paper presents the first simulator that pre-

dicts the performance of real adaptive applications, i.e. applications whose mapping to computation nodes 

may vary over time during program execution. 

Much research has already been carried out on predicting the performance of parallel programs with 

static node allocation. Purely analytical models are generally tailored to a specific application [14] or to a 

class of parallel programs, such as fork-join applications [17]. Other models have two levels of hierarchy 

[1], with a higher-level component representing the task-level behavior of the program and a lower-level 

component representing individual task execution times. These models describe the task-level behavior as 

a task graph [1], [16] or as a timed Petri net [3]. Approaches for modeling individual task execution times 

include measurements [3], [14], stochastic models [16], [17] and the association of an application signa-

ture and a machine profile [19]. 

MPI-SIM [18] and its extension COMPASS [4] are two simulators that predict the performance of MPI 

programs by executing the actual application code. The simulation functionality is provided by a modified 

library that implements the most common MPI calls. Both MPI-SIM and COMPASS derive computation 

times through direct execution [7], i.e. by executing and measuring the running time of the application 

code. The simulation should therefore run on the same hardware as the parallel application. The code does 

not need to be modified, and no distinct model of the application must be maintained. However, a single 

processor performs all computations and the whole problem must fit into the memory of a single comput-

ing node, thus limiting the size of applications that can be simulated. MPI-SIM and COMPASS alleviate 

these problems through parallel simulation, which however requires the parallel system to be available. 

We follow a mixed approach, where the task-level behavior is obtained by executing the runtime and 

application code within the simulator. However, computations that have no impact on the task-level be-

havior of the application may be replaced by duration estimates. Additionally, we may reduce memory 

Computer System Sciences, Vol. 74, Issue 6, 2008, pp 983-999



usage by avoiding data structure allocations. The direct execution drawbacks are therefore considerably 

reduced. We refer to this mixed approach as partial direct execution. 

Unlike other simulators which ignore network delays [2], [17], we take network overheads into account 

by using a simple model and a small set of platform-specific parameters. As a result, our simulator is 

portable and the execution of parallel programs can be accurately simulated on a desktop computer. 

Identifying platform parameters and task duration estimates enables simulations to provide insights 

about the sensitivity of the application to each parameter. This helps identifying potential performance 

optimizations as well as determining whether the execution is CPU- or network-bound. Simulations there-

fore enable application developers to study and improve the performance of their applications without 

maintaining a separate model and without having access to a parallel machine. 

The paper is organized as follows. Section 2 briefly describes the Dynamic Parallel Schedules paral-

lelization framework, and Section 3 explains the integration of the simulator within DPS. The assump-

tions made about the parallel system are described in Section 4. We show simulator validation results for 

an LU factorization application in Section 5, and for a load-balanced traveling salesman problem in Sec-

tion 6. Sections 7 and 8 respectively show the benefits of the partial direct execution and a detailed sensi-

tivity analysis of the LU factorization application. This sensitivity analysis provides insight about the be-

havior of the application for different cluster model parameters. Section 9 draws the conclusions. 

2. The Dynamic Parallel Schedules framework 

DPS [9] describes a distributed memory parallel computation as a flow graph composed of serial op-

erations arranged to form an acyclic directed graph, whose edges are defined by the messages that transit 

between operations. The flow graph describes the asynchronous flow of data between operations. 
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Figure 1. Flow graph describing a high level task divided into subtasks by a custom split operation. Leaf 

operations perform their tasks in parallel. 

The particular implementation of operations is left to the programmer, but each operation must be of 

one of four fundamental types: leaf, split, merge or stream. Leaf operations accept a single input and gen-

erate a single output message. Split operations take one input message and generate one or several output 

messages. Merge operations expect one or several input messages, and generate a single output message 

once all expected input messages have been received. Split operations are typically used to subdivide a 

high-level task into several subtasks that can be performed in parallel. Computation results are then col-

lected and aggregated by the matching merge operation (Figure 1). The fourth operation type, the stream, 

places no restriction on the number of input and output messages. It allows the programmer to refine the 

synchronization granularity by allowing new messages to be streamed out as soon as specific groups of 

incoming messages have been received.  

Operations within a flow graph are carried out within threads. Each thread is wrapped within a data 

structure that provides an execution environment for a set of operations, and queues incoming messages 

until they are processed. Messages are transferred as soon as they are generated, making the execution of 

DPS applications fully pipelined and asynchronous, with automatic overlapping of communications and 

computations. In order to avoid overflowing reception queues, a flow control mechanism can be used to 

limit the number of messages in circulation between a split operation and the matching merge operation. 

Leaf operations are executed atomically. Other operations may be suspended during their execution, 

e.g. due to the flow control mechanism or when merge and stream operations wait for messages that did 

not yet arrive. The suspension prevents deadlocks by allowing other operations to run. 
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The deployment of a DPS application is performed dynamically, and relies on a remote launching 

mechanism to create new application instances as needed. In each application instance, a thread manager 

handles thread creation and destruction requests. Threads can be migrated by transferring the correspond-

ing data structures to another application instance [10]. A communication layer, based on TCP sockets, 

hides network transfers and physical thread location from the application programmer. 

3. Structure of the simulation system 

Most of the information needed to reconstruct the execution of a parallel application is only available 

at runtime. The execution pattern may for instance be data dependent, and intermediate computation re-

sults may influence future data distribution decisions. In addition, parallel programs may implement load-

balancing schemes that make it very difficult to predict the location of computations and the resulting 

network transfer patterns. This motivated our decision to integrate the simulation capabilities within the 

DPS parallelization framework. By directly executing code both from the application and from the frame-

work runtime, the simulator knows the destination of every message, the number of messages sent by 

each split operation and the current number of processing nodes and threads. An application is simulated 

by simply activating a compilation flag. 

In order to emulate the deployment of threads onto compute nodes, the simulator uses a modified re-

mote launching mechanism that instantiates a new thread manager for each application instance that 

would have been launched in a real execution. It simultaneously maintains a virtual representation of each 

computing node on which the application is deployed (Figure 2). The TCP network layer is replaced by a 

simulated network layer, which handles all communications between the virtual nodes. All mechanisms 

that rely on the network layer, such as the transfer of messages or the dynamic allocation of threads, are 

used without modifications within simulated applications. 
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Figure 2. Allocation of threads to computing nodes in a real and simulated application (more than one 

thread may be running on each node). For the simulation, every thread manager is attached to a virtual 

node. 

The simulator reconstructs the application execution by keeping track of which threads and which vir-

tual nodes execute the different operations. Since operations may be suspended during their execution, the 

simulator subdivides them into atomic steps, i.e. operation parts which execute without being suspended. 

Message transfers are also assimilated to atomic steps. Except for the first atomic step of a flow graph, an 

atomic step starts when another atomic step terminates, and ends when a message transfer completes or 

when an operation suspends or finishes its execution. 

The simulator code runs within its own thread, called the simulator thread. Threads that execute DPS 

operations are referred to as computation threads. The simulator thread maintains a simulation clock and 

controls the activation of the computation threads, ensuring that no two threads run simultaneously. When 

a computation thread completes the execution of an atomic step, it queues the atomic step and its duration 

within the simulator. The computation thread then suspends its execution and resumes the simulator 

thread. When the simulator thread is running, it advances its simulation clock to the point where an 

atomic step completes. If the completed atomic step represents a message transfer, the simulator resumes 
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the computation thread that receives the transferred message. If the atomic step belongs to an operation, 

the simulator resumes the computation thread running that operation. In all cases the simulator thread is 

suspended while the computation thread is running (Figure 3). 

 

Computation threads Simulator thread 

Operation suspended or terminated 

Atomic step simulation completed 
 

Figure 3. Alternating execution of DPS operations and of the simulator. 

Figure 4 shows the atomic steps of the execution of a simple flow graph deployed on 3 nodes as in 

Figure 2. One node runs the operations Split and Merge, while the other two run the leaf operations Leaf1 

and Leaf2. The split operation is composed of the atomic steps S1 and S2, which respectively generate the 

message transfers T1 and T2. Each leaf operation consists of a single atomic step (L1 and L2). The subse-

quent message transfers T1’ and T2’ trigger the execution of the atomic steps M1 and M2 within the op-

eration Merge. The gap between M1 and M2 indicates that the Merge operation is suspended while wait-

ing for the message from L2. 
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Figure 4. Timing diagram for the parallel execution of a flow graph with a split operation sending two 

messages to two distinct threads. Each block represents an atomic step. The threads are deployed accord-

ing to Figure 2. 
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Figure 5. Timing diagram of the simulation of the flow graph shown in Figure 4. The upper part displays the execu-

tion of the atomic steps that compose DPS operations. The atomic steps are executed one by one, only when the 

simulator thread is suspended. The lower part shows the management of the simulated time. Removing the dashed 

gaps between the gray blocks reveals the timing diagram of Figure 4. 
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Figure 5 details the temporal execution of the simulation for the flow graph shown in Figure 4. The 

simulator thread first triggers the execution of the split operation on Thread 0, which runs until the first 

message is posted and the atomic step S1 and its running time are queued in the simulator. Control is 

passed to the simulator thread, which increments its simulation clock until the simulation time associated 

with S1 has elapsed. Then, Thread 0 is resumed. It first queues the message transfer T1 in the simulator, 

and resumes execution of the split operation until the second message is sent and the atomic step S2 is 

queued in the simulator. Although T1 was queued before S2, both atomic steps run in parallel in respect 

to their simulation time. When S2 completes, control is transferred to Thread 0 which resumes the split 

operation. Since no other message must be sent, the split operation terminates, and control returns to the 

simulator thread. When, within the simulator, the recorded time associated with the message transfer T1 

elapses, the associated message is delivered to Thread 1, which is resumed and triggers the leaf operation 

Leaf1. The simulation lasts until the final output message of the flow graph is generated. 

The upper part of the timing diagram in Figure 5 shows that two computation threads never run simul-

taneously. The execution of the simulator thread also never overlaps with the execution of the computa-

tion threads. In respect to simulation time, operations are correctly overlapping: the timing diagram drawn 

by the execution of the simulator thread (i.e. with the dashed parts removed) is identical to the timing dia-

gram shown in Figure 4. This simulation scheme also requires no a priori knowledge about the execution: 

the number of messages, their destination thread, and the number and location of operations are all deter-

mined at runtime. 

4. The simulator’s system model and its assumptions 

In the previous section, we have shown that given the running time of each atomic step the parallel 

structure of the application can be recreated within the simulator. Since only a single computation thread 

is active at any given time, the processing time of each atomic step can be recorded through direct execu-

tion, and be used as its minimal duration, i.e. the running time when CPU or network resources are not 

shared. 
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For programs whose parallel execution pattern does not depend on the content of the computed data, 

the prohibitive running time of direct execution simulation may be reduced by using an estimate of the 

computation time instead of performing the actual computations. We refer to this technique as partial di-

rect execution. The time estimate passed to the simulator is simply a number of microseconds, and may 

thus come from any source, e.g. deduced from previous executions, computed as a function of some data 

decomposition parameters, or generated using any other model (see the related work in section 1). By not 

measuring directly operation execution times, the simulation may run on a computer that is different and 

potentially less powerful than the one used for the parallel computations. 

It is also possible to combine direct execution and partial direct execution. For parallel programs that 

perform the same operations repeatedly, we may for instance measure the running times of the first n in-

stances of an operation, and reuse the averaged measure for the remaining instances. 

The minimal duration of message transfers is estimated using the traditional formula 

      
b

s
lt += ,     (1)  

where l is the network latency, b the network bandwidth, and s the size of the transferred message. Al-

though the formula is simple, it is very accurate in predicting the TCP/IP transfer time of messages be-

tween two processing nodes and has therefore been widely used [3], [14]. It however assumes that no 

network contention occurs, and can therefore underestimate communication costs for network intensive 

applications. The latency and bandwidth parameters are constant for a given parallel machine, and must 

be measured or estimated separately for each target cluster. The size of each message is determined by the 

simulator at runtime using their size descriptor. The actual message content does not have to be allocated. 

In partial direct execution simulations, one may therefore avoid allocating the corresponding data struc-

tures to reduce the memory requirements of the simulation (the running time of time consuming memory 

operations can be explicitly added if necessary). 

We model resource sharing as follows. We assume that the communication network between the nodes 

has a star topology, where each node is connected via a full duplex link to a central full crossbar switch 
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which is never a bottleneck. The input and output bandwidth are both identical and equal to b. The band-

width of each node is shared equally among all incoming, respectively outgoing data transfers. A similar 

model (with arbitrary topologies) was used in [8]. Transfers between operations running on the same 

thread or on threads running on the same node are considered to be instantaneous. 

Since computations and communications may overlap, the processing power used to handle communi-

cations also needs to be taken into account. Receiving messages induces more hardware interrupts and 

more memory copies than sending messages, and is thus more costly. Moreover, we noticed that the con-

sumed processing power depends on the number of outgoing and incoming communications. Similarly to 

the bandwidth and latency parameters, the processing power required for communications must be meas-

ured separately and provided to the simulator. In all cases, the characterization of these communication 

and processing parameters is independent of the simulated applications, and thus needs to be carried out 

only once. 

We assume that all nodes have a single processor and that no swapping occurs between memory and 

disk. Since the simulator has a complete knowledge about ongoing computations and communications, it 

knows at every time point how many concurrent transfers are carried out by each processing node. It can 

therefore compute the remaining processing power and distribute it evenly among concurrently running 

operations. The simulator also produces detailed statistics about the CPU and network usage of each node 

during application execution. 

5. First test application: LU factorization 

We first measure the accuracy of our simulator for a parallel block LU matrix factorization application 

with partial pivoting [11]. The block-based LU factorization relies on the iterative decomposition of the 

matrix. More or less pipelined implementations improve or degrade the interleaving of operations belong-

ing to successive iteration steps. Such modifications only influence the ordering of the computations, and 

have no impact on the total amount of data transferred over the network, on the location of the operations, 

or on the amount of computation they perform. The amount of parallelism and the decomposition granu-

larity of the problem can also be varied, so as to produce executions with different communication pat-
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terns and with different computation to communication ratios. Since the amount of computations de-

creases with every iteration, the efficiency of the application varies over time and can benefit from a re-

duction in the number of allocated compute nodes. The application therefore provides a wide range of 

runtime behaviors. 

Efficient implementations of the parallel LU factorization use a block-cyclic distribution [5] rather than 

the parallelization strategy described below. Nevertheless, the higher network utilization of our imple-

mentation makes it a good candidate for validating our resource sharing assumptions. 

5.1 Implementation 

Consider a matrix A of size n x n, with block size r, that is to be factorized. The matrix A is split as fol-

lows: 
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According to this decomposition, the LU factorization can be realized in three steps. 

Step 1. Compute the rectangular LU factorization with partial pivoting. 
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  Step 2. Compute T12 by solving the triangular system.  

where A11 is a square block of size r 

x r. 

where L11 and U11 are lower, 

resp. upper triangular matrices. 
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This is the operation performed by the trsm routine in BLAS [15]. Carry out row flipping according to 

the partial pivoting of step 1. 

Step 3. To obtain the LU factorization of the matrix A, X must be lower triangular and Y upper triangu-

lar. We can define A’ = X · Y, and iteratively apply the block LU factorization to A’ until A’ is a square 

matrix of size r. 
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In our implementation, we distribute the matrix onto a set of threads. Each thread stores one column 

block of size r x n. Another set of threads is dedicated to performing the multiplications of matrix blocks. 

The flow graph for the LU decomposition is shown in Figure 6. Operation (a) performs the LU factoriza-

tion of the top left block A11 (step 1), and (b) solves in parallel the triangular system in order to compute 

T12 for all other column blocks and performs the row flipping (step 2). The recursion on the matrix fac-

torization is obtained by replicating a part of the graph (in gray) once for each LU factorization level. For 

the LU factorization presented here, the most expensive part is the block-based matrix multiplication 

L21·T12, both from the computation and the communication perspectives. The multiplication is performed 

using blocks of size r x r. All input blocks for the multiplication are initially collected within the stream 

operation (c). The blocks from L21 are available on the local thread within which the merge operation is 

executing, and the blocks from T12 are transferred from the local thread states where the preceding trsm 

operations (b) were carried out. The messages sent to each of the matrix block multiplications (d) contain 

two matrix blocks of size r x r. Messages are routed such that multiplications are evenly distributed on all 

threads. Each matrix block multiplication yields a matrix block of size r x r that is sent to the next subtrac-

tion operation (e). Notifications are collected at the end of the multiplications (step 3), and as soon as the 

first block is complete, the next level LU factorization is performed (f). Triangular system solve requests 

are streamed out as other column blocks complete. Operation (g) performs the row flipping on previous 

column blocks and the merge operation (h) collects row exchange notifications for termination. 
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Figure 6. Flow graph for the LU factorization. The gray part is repeated for all but the last iteration. 

5.2 Variants 

We now explore variations of the decomposition block size, modifications of the LU factorization flow 

graph and the use of the flow control mechanism provided by the DPS parallelization framework.  

In the flow graph of Figure 6, the stream operations (c) and (f) increase the pipelining of the applica-

tion, i.e. the number of operations that may run concurrently, by allowing trsm and LU operations (b) and 

(f) to be performed simultaneously with matrix multiplications (d) and their associated data transfers. We 

introduce barrier synchronizations by replacing stream operations with merge-split pairs of operations, 

thereby preventing pipelining. We refer to this less efficient implementation as the basic flow graph, as 

opposed to the pipelined flow graph described in Figure 6.  

Each thread has an associated queue that stores incoming messages until they are processed. Sending 

all multiplication requests at once thus fills the queues of the destination threads, which delays the proc-

essing of requests sent by subsequent iterations and reduces the pipelining potential. By applying flow 

control to the stream operations that generate the multiplication requests, we limit the number of mes-

sages queued at each iteration. This improves the pipelining by interleaving operations belonging to suc-

cessive iterations (Figure 7). 
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Figure 7. The flow control mechanism improves the interleaving of messages and enables iterations 2 and 

3 to be started earlier.  

Varying the block size r used for the decomposition has an impact on the number of operations, and 

consequently on the computation to communication ratio (smaller blocks yield a lower computation to 

communication ratio). In the pipelined flow graph, the value of r also influences the depth of the pipeline, 

and thus the amount of overlapping that can be achieved. 

Another modification on the LU factorization flow graph consists in further parallelizing matrix block 

multiplications by decomposing blocks of size r x r into row blocks of size s x r and column blocks of 

size r x s. We use a flow graph (Figure 8) that (a) distributes the column blocks of the second matrix to 

the processing nodes, which (b) store them locally. Each sub-block multiplication can then be performed 

by (d) sending the line blocks of the first matrix to the processing nodes, which (e) multiply them with the 

locally stored column blocks. The compositional nature of DPS allows us to replace operation (e) in 

Figure 6 by the flow graph shown in Figure 8. 

 

 (a)  (b) 
 (c)  (d) 

 (e)  (f)  
 

Figure 8. Flow graph for matrix multiplication. It may replace operation (e) in Figure 6.  

5.3 Validation 

We validate the simulator by comparing measurements and simulations using the parallelization and 

pipelining flow graph variations discussed in section 5.2. By combining one or several of the modifica-

tions proposed and observing their impact on the parallel application's running time, we verify how pre-
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the improvement brought by the overlap of communications and computations under various conditions, 

we also reduced the CPU utilization for the communications. Our first simulations consider eight compute 

nodes and a coarse decomposition with one column block per node (r=324). The results are summarized 

in Table 2. Such a decomposition produces fairly large messages and the latency parameter contributes 

little to their transfer time (line 2), while the bandwidth parameter plays a more important role in the total 

application running time (line 3). Due to the better overlapping of computations and communications pro-

vided by the pipelined flow graph, communication times are partly hidden. Therefore the performance 

increase brought by the improved network parameters is lower than for the basic flow graph. The 

factorization of the blocks on the matrix diagonal (operation (f) in Figure 6) lies on the critical path of the 

execution for the basic flow graph. Speeding up the LU computations by 10% reduces the overall running 

time by the same duration (4.1 seconds) for both parallelization strategies (Table 2, last line). 

 

 

Basic flow graph Pipelined flow graph + flow control  

 
Predicted run-

ning time [s] 

Relative difference 

in respect to original 

parameters 

Predicted run-

ning time [s] 

Relative difference in 

respect to original pa-

rameters 

Original parameters (r=324) 86.5  78.3  

Latency=2ms 86.2 -0.3 % 78.1 -0.3 % 

Latency=2ms 

Bandwidth = 912 MB/s 

72.7 -16.0 % 69.5 -11.2 % 

CPU utilization for comm. di-

vided by 4 

82.9 -4.2 % 75.9 -3.1% 

LU computation 10% faster 82.4 -4.8 % 74.2 -5.2% 

Table 2. Predicted running times with one column block per node on eight nodes (r=324), for varying 

application and cluster parameters. The relative difference with respect to the predicted running time with 

the original parameters (in bold) is displayed next to every prediction. The original network is Fast 

Ethernet, with a latency of 1350ms and a bandwidth of 11.85MB/s. 

Table 3 shows the same set of measurements performed when the application runs with a finer grain 

decomposition (3 column blocks per node, r=108). The total amount of data transferred over the network 

grows by a factor of 3 (1.3 vs 0.4 GB), and the number of messages increases about 24 times (14701 vs. 
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Figure 10. Variation of computation time caused by parallel sub-block multiplications (PM), in-

creased pipelining (P) and flow control (FC), when the matrix is split into two column blocks per node (4 

nodes). Prediction errors are below 5%. 

Figure 10 shows the effects of the parallel sub-block multiplications (PM), pipelining (P) and flow con-

trol (FC) modifications when the matrix is split into eight block columns (i.e. two per node) instead of 

four, and the reference time is the measured running time when r=324 in Figure 9. Due to the well bal-

anced distribution of block multiplications within the reference setup, the increased communication re-

quirements of transmitting sub-blocks for the parallel sub-block multiplications (PM) slows down the ap-

plication execution. On the other hand, pipelining (P) and flow control (FC) slightly improve the perform-

ance. 
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Impact of decomposition granularity (8 nodes)
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Figure 11.  Impact of the decomposition granularity on the performance of different pipelining 

strategies (8 nodes). 

When we increase the number of processing nodes to eight nodes, the benefits of the pipelined flow 

graph (P) and of the flow control (FC) become more significant (Figure 11). The optimal block size for 

the LU factorization is also influenced by the parallelization strategy. In all cases, pipelining considerably 

improves the performance with respect to the basic flow graph, and the conjunction of pipelining and flow 

control further improves the results. Note that the growth in the number of operations performed and mes-

sages sent during execution (from 352 when r=324 to about 22,000 when r=81) has no visible impact on 

the prediction accuracy. 
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Dynamic efficiency of LU factorization
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Figure 12. The parallel computation of LU iterations becomes less efficient over time. Removing 

threads during execution increases the efficiency of the subsequent iterations. 

We now consider the impact of reducing the number of multiplication threads during execution. In our 

test case, the 2592x2592 matrix is split into eight column blocks distributed onto four nodes (r=324), and 

the computation is performed using the basic flow graph, allowing to clearly separate the different itera-

tions. Figure 12 shows the dynamic efficiency (i.e. the efficiency at each iteration step) of the application. 

During the first iteration, four nodes are about 50% more efficient than eight nodes (60.2% vs. 37.6%). 

The relative efficiency of 4 nodes versus 8 nodes increases up to iteration 6 where 4 nodes have twice the 

efficiency of 8 nodes, i.e. iteration 6 has the same running time on 4 nodes and on 8 nodes. Therefore, 

removing nodes during execution should not have a large impact on the total computation time. 
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Figure 13. Measured and predicted running times of different dynamic thread removal strategies. 



This is confirmed by measuring the total execution time of the application for different thread removal 

strategies (Figure 13). Using eight nodes for the whole computation or only for the first iteration yields 

almost the same running time, and being able to deallocate four nodes after the first iteration greatly in-

creases the dynamic efficiency of the application (Figure 12, "kill 4 after iteration 1"). Figure 14 displays 

the real and simulated trace of the corresponding computations (network transfers are hidden for readabil-

ity).  
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Figure 14. Trace of the real (left) and simulated (right) execution of the "kill 4 after iteration 1" con-

figuration in Figure 12 (network transfers are not shown). Time runs from left to right. The first eight 

pairs of lines represent operations running on threads s1-s8 that store column blocks. The last eight lines 

represent operations on multiplication threads m1-m8 (dark gray), four of which are removed after the 

first iteration. All the other threads run on the four remaining compute nodes. 

Since the first iteration accounts for approximately 25% of the parallel running time, the service rate of 

the cluster can be significantly increased if the deallocated compute nodes are assigned to other applica-

tions. In this example, the execution with the static node allocation uses eight nodes during 86.9 seconds, 

or 695.2 seconds, while the dynamic allocation strategy requires eight nodes during 22.5 seconds and four 

nodes during 66 seconds. The total processor utilization is therefore reduced by 37% to 438.4 seconds. 
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Since the first iteration accounts for approximately 25% of the parallel running time, the service rate of 

the cluster can be significantly increased if the deallocated compute nodes are assigned to other applica-

tions. In this example, the execution with the static node allocation uses eight nodes during 86.9 seconds, 

or 695.2 seconds, while the dynamic allocation strategy requires eight nodes during 22.5 seconds and four 

nodes during 66 seconds. The total processor utilization is therefore reduced by 37% to 438.4 seconds. 



favorable. This leads to a lower speedup, despite the larger running time of the application. The speedup 

predicted by simulation and the actually measured speedup differ by 5.3% on average. 
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Figure 15. Measured and predicted speedups for a traveling salesman solver. 

7. Improving simulation times and portability through partial direct execution 

In the present section, we analyze to which extent the simulation time and memory use can be reduced 

by partial direct execution. 

Table 1 displays the time required to perform the simulation of the LU factorization of a 2592x2592 

matrix, with the real application running on eight nodes, using the basic flow graph and the decomposi-

tion granularity r=216. For reference, the real parallel execution lasts 62.3s, and the real serial execution 

lasts 185.1s. With a running time of 193s, the simulator’s overhead when direct execution is used is 4.3%. 

We implement partial direct execution (PDEXEC) by simply replacing calls to the matrix multiplica-

tion, LU, trsm, and row flipping functions with simulator notifications incorporating the corresponding 

benchmarked times. We then remove the memory allocation for the initial matrix (NOALLOC), together 

with memory copies performed in the corresponding DPS operations. The final simulation is almost ten 

times faster than the actual parallel execution on the same hardware and uses only 14MB of memory. The 

predicted running time changes by only -1.3% compared with the direct execution simulation. 
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UltraSparc II 440Mhz (Solaris) 

Running 

time [s] 

Memory usage 

[MB] 

Predicted running 

time [s] 

Real application (8 nodes) 62.3  N/A 

Real application (1 node) 185.1 108 N/A 

Direct execution (sim) 193.0 127 60.7 

PDEXEC (sim) 9.1 124 60.3 

PDEXEC NOALLOC (sim) 6.5 14 59.9 

Pentium 4 2.4GHz (Windows)    

Direct execution (sim) 29.7 127 N/A 

PDEXEC (sim) 2.5 124 60.0 

PDEXEC NOALLOC (sim) 1.6 14 59.9 

Table 1. Comparison of simulation times and memory consumptions in different simulation settings, and 

corresponding predicted running time. The real application running time is 62.3 s (in bold). 

This optimized simulator mode produced all the simulation results presented in section 5.3. Its predic-

tion accuracy for the 168 measurements carried out for establishing the results are shown in Figure 16. 

71.4% of all predictions are within ±4% accuracy, 81.6% are within ±6% accuracy, and more than 95% 

are within ±12% prediction accuracy. 
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Figure 16. Histogram of prediction errors with partial direct execution 

Table 1 displays simulation results for two different platforms. Since the Pentium 4 processor is much 

faster than the UltraSparc II, prediction results based on direct execution are not representative. However, 

when partial direct execution is used, the faster processor has nearly no impact on the predicted running 

time of the LU factorization application. In order to assess the portability of our simulator, we ran a same 

set of simulations on four different systems, three with single processors at 600MHz, 2.4GHz and 3GHz, 

and on one with two dual-core 2.6GHz processors. The simulation set consists of 100 different application 

configurations, combining different number of nodes, decomposition block sizes, the use of flow control 



and parallel sub-block multiplications. We ran all simulations with and without matrix allocation (NOAL-

LOC), producing 200 prediction results. Figure 17 shows the relative difference of the 200 predictions 

produced by each one of the three fastest systems, compared to the predictions produced by the slowest 

system (600 comparisons in total). Despite the performance difference, 97% of the prediction results dif-

fer by only ±2%. The outliers with an error greater than 5% represent 1.3% of all measurements. The fact 

that predictions made on the multiprocessor system match results obtained on single processor systems 

shows that the execution of the various computation threads is correctly sequenced. 
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Figure 17. Histogram of relative differences of running times predicted on the three fastest systems 

with respect to predictions performed on the slowest system (3 times 200 comparisons in total). 

8. Using the simulator for analyzing parallel applications 

As described in the previous section, modeling the duration of the individual operations and message 

transfers of a DPS application decreases the running time and memory consumption of the simulated ap-

plication. It also leads to a parametric model of the application [14]. Since parametric models allow the 

different performance factors to be isolated from one another, they enable analyzing the sensitivity of the 

overall running time with respect to the different parameters. Varying the running time of specific opera-

tions helps identifying the operations located on the critical path of the computation and quantifying the 

potential benefits of their optimization. 

For both the basic and the pipelined flow-controlled LU factorization application, we simulated a high 

performance network by reducing the latency and increasing the bandwidth parameters. In order to study 
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the improvement brought by the overlap of communications and computations under various conditions, 

we also reduced the CPU utilization for the communications. Our first simulations consider eight compute 

nodes and a coarse decomposition with one column block per node (r=324). The results are summarized 

in Table 2. Such a decomposition produces fairly large messages and the latency parameter contributes 

little to their transfer time (line 2), while the bandwidth parameter plays a more important role in the total 

application running time (line 3). Due to the better overlapping of computations and communications pro-

vided by the pipelined flow graph, communication times are partly hidden. Therefore the performance 

increase brought by the improved network parameters is lower than for the basic flow graph. The 

factorization of the blocks on the matrix diagonal (operation (f) in Figure 6) lies on the critical path of the 

execution for the basic flow graph. Speeding up the LU computations by 10% reduces the overall running 

time by the same duration (4.1 seconds) for both parallelization strategies (Table 2, last line). 

 

 

Basic flow graph Pipelined flow graph + flow control  

 
Predicted run-

ning time [s] 

Relative difference 

in respect to original 

parameters 

Predicted run-

ning time [s] 

Relative difference in 

respect to original pa-

rameters 

Original parameters (r=324) 86.5  78.3  

Latency=2ms 86.2 -0.3 % 78.1 -0.3 % 

Latency=2ms 

Bandwidth = 912 MB/s 

72.7 -16.0 % 69.5 -11.2 % 

CPU utilization for comm. di-

vided by 4 

82.9 -4.2 % 75.9 -3.1% 

LU computation 10% faster 82.4 -4.8 % 74.2 -5.2% 

Table 2. Predicted running times with one column block per node on eight nodes (r=324), for varying 

application and cluster parameters. The relative difference with respect to the predicted running time with 

the original parameters (in bold) is displayed next to every prediction. The original network is Fast 

Ethernet, with a latency of 1350ms and a bandwidth of 11.85MB/s. 

Table 3 shows the same set of measurements performed when the application runs with a finer grain 

decomposition (3 column blocks per node, r=108). The total amount of data transferred over the network 

grows by a factor of 3 (1.3 vs 0.4 GB), and the number of messages increases about 24 times (14701 vs. 
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613). The lower computation to communication ratio induced by smaller blocks causes network transfers 

to account for a greater part of the overall running time. Since messages are smaller, the network latency 

also becomes an important factor. Both considerations are reflected in the simulation results, where im-

proved network parameters reduce the running time much more than with the coarser decomposition used 

in Table 2. Their impact is smaller, but remains important, for the pipelined flow graph. 

On the hardware used for our real execution measurements, handling multiple simultaneous transfers to 

eight nodes requires more than 50% CPU utilization. This factor is very important for the pipelined flow 

graph due to the large overlap between communications and computations. Dividing this CPU utilization 

for communications by four therefore significantly decreases the application running time (-27% in Table 

3, line 4). The increased decomposition granularity reduces the weight of the LU factorization operations. 

Since the network is now the bottleneck, optimizing these computations yields very little benefits for both 

flow graphs (Table 3, last line). 

 

Basic flow graph Pipelined flow graph + flow control  

 
Predicted running 

time [s] 

Relative difference 

in respect to original 

parameters 

Predicted running 

time [s] 

Relative difference in 

respect to original 

parameters 

Original parameters (r=108) 83.9  43.0  

Latency=2ms 77.2 -8.0 % 41.2 -4.1 % 

Latency=2ms 

Bandwidth = 912 MB/s 

30.4 -63.7 % 24.9 -42.0 % 

CPU utilization for comm. 

divided by 4 

83.1 -0.9 % 31.2 -27.4 % 

LU computation 10% faster 83.2 -0.8 % 42.6 -1.0 % 

Table 3. Predicted running times with three column blocks per node on eight nodes (r=108), for varying 

application and cluster parameters. The relative difference with respect to the predicted running time with 

the original parameters (in bold) is displayed next to every prediction. 

The impact of the excessive network utilization of our parallel LU factorization implementation is even 

more apparent when we simulate faster processors by dividing all computations times by four and by re-

ducing the CPU consumed by communications by a factor of four. Table 4 shows results for both r=324 

and r=108. Improving the latency and the network bandwidth now yields very significant running times 
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reductions in all configurations. As expected, the faster processors reduce running times in all cases. 

However, the basic flow graph now runs faster with the coarser and less network-intensive decomposition 

(one column block per node, r=324). As expected, the pipelined flow graph performs better than the basic 

flow graph. 

Basic flow graph Pipelined flow graph + flow control  

 
Predicted running 

time [s] 

Relative difference in 

respect to original 

parameters 

Predicted running 

time [s] 

Difference in respect 

to original parame-

ters 

r=324, 4x faster processors 36.6  25.4  

Latency=2ms 36.3 -0.9 % 25.3 -0.3 % 

Latency=2ms 

Bandwidth = 912 MB/s 

18.3 -49.9 % 17.5 -31.0 % 

r=108, 4x faster processors 76.2  24.2  

Latency=2ms 69.3 -9.0 % 21.0 -13.2 % 

Latency=2ms 

Bandwidth = 912 MB/s 

8.3 -89.1 % 6.6 -72.5 % 

Table 4. Impact of network parameters on predicted running times when the duration of all individual 

computations and the CPU consumption of communications have been reduced by a factor of 4. 

The presented results show that each one of the selected hardware parameters, i.e. the network latency, 

network bandwidth and the CPU consumption for communications, has a significant impact on the appli-

cation running time. The quality of the predictions obtained in the previous sections show that this pa-

rameter set is sufficient for characterizing the behavior of a cluster composed of a small set of computing 

nodes. 

Despite the approximations made within the models and within the simulations, our simulator can be 

used as a performance analysis tool. Several tiny delays, such as the internal latencies of the parallel run-

time system, are neglected in the current model. The accuracy of predictions is therefore likely to de-

crease for fine-grain applications performing many very short operations and sending many very small 

messages. 

9. Conclusions and future work 

The performance of a parallel application not only depends on its implementation, but also on decom-

position parameters, on tasks to nodes mapping and on node allocation decisions. The choice of optimal 
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parameters may depend on the application input data as well as on the number of allocated compute nodes. 

The dynamic allocation of compute nodes during the execution of parallel applications can further im-

prove the utilization of cluster resources. In order to help decide how and when the allocation should be 

modified, we introduce the concept of dynamic efficiency which expresses the resource utilization effi-

ciency as a function of time. We obtain information about the performance and the dynamic efficiency of 

parallel programs by running a simulator on top of the parallelization framework runtime system. 

In the presently used Dynamic Parallel Schedules framework, the parallel structure of an application is 

specified by a flow graph where nodes represent serial computations and edges represent transferred mes-

sages. Computations are performed by threads, which can be dynamically allocated or deallocated onto 

compute nodes. We simulate the parallel execution of an application by running all threads within a single 

application instance. The simulator then coordinates and synchronizes the execution of the threads to con-

trol the application execution. Communication patterns, as well as the number of messages and operations 

are derived through direct execution.  

By default, the duration of each operation is also obtained through direct execution. The running time, 

memory requirements and portability of the simulation are improved by using partial direct execution, i.e. 

by replacing time-consuming computations with running time predictions, and by avoiding large memory 

allocations. Varying the duration of individual operations enables determining the operations that belong 

to the critical path and that can benefit from further optimizations. 

We describe a simple model for typical cluster configurations that accurately takes bounded and shared 

network and CPU resources into account. We verify the prediction accuracy of our simulator by applying 

several parallelization and deployment strategies to an LU factorization application and to a simple travel-

ing salesman problem solver. The LU factorization application also shows that the simulator is able to 

accurately predict running times and dynamic efficiency when deallocating compute nodes at different 

time points of the program execution. By varying the simulated hardware parameters such as the process-

ing power of the compute nodes, the network latency and throughput, and the CPU utilization of network 
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communications, we identify the performance bottlenecks within the application and validate our cluster 

parameterization and resource sharing model.  

Although results are presented here in the context of DPS, the cluster modelization and the principles 

of the simulator can be adapted to other parallelization models. 

In the future, we intend to extend the simulation framework in order to simulate a cluster running con-

currently multiple, possibly different applications whose compute nodes allocation varies dynamically 

over time. 
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