

A Debugger for Flow Graph Based Parallel Applications

Ali Al-Shabibi Sebastian Gerlach Roger D. Hersch Basile Schaeli

Ecole Polytechnique Fédérale de Lausanne (EPFL)

School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland

{ali.al-shabibi, basile.schaeli}@epfl.ch

ABSTRACT
Flow graphs provide an explicit description of the parallelization

of an application by mapping vertices onto serial computations

and edges onto message transfers. We present the design and im-

plementation of a debugger for the flow graph based Dynamic

Parallel Schedules (DPS) parallelization framework. We use the

flow graph to provide both a high level and detailed picture of the

current state of the application execution. We describe how reor-

dering incoming messages enables testing for the presence of

message races while debugging a parallel application. The knowl-

edge about causal dependencies between messages enables track-

ing messages and computations along individual branches of the

flow graph. In addition to common features such as restricting the

analysis to a subset of threads or processes and attaching sequen-

tial debuggers to running processes, the proposed debugger also

provides support for message alterations and for message content

dependent breakpoints.

1. INTRODUCTION
Parallel applications are vulnerable to types of errors to which

single-threaded applications are immune. Most of these errors

stem from the non-deterministic orderings of events within the

application. Common representative of such errors are deadlocks,

when conflicts over resources prevent the application from mov-

ing forward, and message races, when reordering the order of

delivery of messages changes the result of the computation. Paral-

lel application debuggers should therefore provide tools to test

and analyze such specific errors. Moreover, the recent advent of

large-scale systems requires new solutions that filter, aggregate

and preprocess the overwhelming amount of information deliv-

ered to the developer.

Several contributions discuss the importance of using multiple

abstraction levels for parallel program debugging [13, 14, 16].

They describe interesting parallel debugging concepts, such as

process isolation, time-process communication graphs and call

graph representations of the underlying parallel program execu-

tion.

Other debugging tools explicitly target large-scale systems. One

tool [2] focuses on aggregating the textual output of the different

processes and another tool [1] aggregates their stack trace to iden-

tify processes which, despite being identical, behave differently.

In their case study, the authors of [1] use their tool in order to

identify a subset of processes that have an erroneous behavior,

and then use a distinct full featured debugger to further analyze

these processes.

Multiple full-featured interactive parallel debuggers have been

described in the literature, e.g. Mantis [17], TotalView [6] and

p2d2 [9]. All support the isolation of specific processes, as well as

attaching a sequential debugger to remote application instances,

which enables breakpoints to be set in individual processes. To-

talView also supports the inspection of message queues in MPI

programs [4], [21]. Message queue inspection is also available in

the debugger for the Charm++ parallel application development

framework [11]. In the latter case, the integration with the

Charm++ parallel runtime enables higher-level features such as

setting breakpoints on remote entry points [18]. While these tools

provide the developer with detailed information about the applica-

tion execution, none of them provides an instantaneous high-level

picture of the current state of the application execution.

The detection and debugging of message races received much

attention from researchers. However, most work focuses on re-

cord and replay techniques to enable reproducing a race once it

has been detected [3, 10, 15, 21, 22]. Few proposals explicitly test

different message delivery orderings, and none of them has been

integrated within a debugger [12, 19].

The debugger described in the present contribution targets appli-

cations developed using the Dynamic Parallel Schedules (DPS)

parallelization framework [7]. The parallel structure of these ap-

plications is described as an acyclic directed graph that specifies

the dependencies between messages and computations. By dis-

playing the current state of the graph, the debugger can provide

the application developer with much information in a compact

form. In order to change the ordering of computations, we allow

the reordering of messages that await processing. For this purpose,

we provide several types of breakpoints which suspend the execu-

tion of specific threads and let messages accumulate in the queues.

Our tool therefore enables controlling the application execution

such that execution scenarios that occur only rarely in actual exe-

cutions can be explicitly tested. In addition to the aforementioned

features (isolating processes, attaching sequential debuggers, set-

ting high-level operation breakpoints and inspecting message

queues), we describe the following original contributions:

• The content of messages can be modified from within the

debugger. In addition, we use knowledge about the structure

of the transferred data to create conditional breakpoints rely-

ing on specific data values within the messages.

• Our debugger supports the reordering of messages, enabling

testing for message races.

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD'07), 2007, pp. 14-20

• The graph representation of an application provides an in-

stantaneous feedback of the current state of the execution.

While such a representation is natural for data flow lan-

guages, it is the first time that this representation is used in

the context of parallel application debugging.

• The graph also defines the causality between events occur-

ring during the parallel application execution. We use that

knowledge to trace sequences of causally dependent mes-

sages, i.e. we study successions of messages and operations

along a single branch of the flow graph.

Although the current discussion is carried out in the context of

DPS applications, the notions of message content based debug-

ging and of message reordering can be applied to any message-

passing programming model.

The rest of the paper is organized as follows. Section 2 presents

the Dynamic Parallel Schedules programming model. Section 3

describes the general architecture of the debugger, and Section 4

describes its features. An example of utilization is then provided

in Section 5. Issues regarding the scalability of the debugger as

well as the future work are mentioned in Section 6. Section 7

draws the conclusions.

2. DYNAMIC PARALLEL SCHEDULES
DPS describes a distributed memory parallel computation as a

flow graph composed of serial operations arranged to form an

acyclic directed graph. The edges are defined by the message

types that transit between operations. The flow graph describes

the asynchronous flow of data between operations.

The particular implementation of operations is left to the devel-

oper, but each operation must be of one of four fundamental types:

leaf, split, merge or stream. Leaf operations accept a single input

and generate a single output message. Split operations take one

input message and generate one or several output messages.

Merge operations expect one or several input messages, and gen-

erate a single output messages once all expected messages have

been received. The fourth operation type, the stream, puts no re-

striction on the number of input and output messages and allows

the programmer to refine the synchronization granularity by

streaming out new messages as soon as specific groups of incom-

ing messages have been received.

Figure 1 shows the flow graph of a simple parallel merge sort

application. It is composed of a custom split operation that re-

ceives a vector of integers as input and partitions it into parts

(SplitVector). A leaf operation then sorts the vector parts (Sort),

and a merge operation aggregates the results into a single sorted

vector (MergeVectors). Communications are performed using

messages of a single type.

Leaf

Sort

Merge Split

SplitVector MergeVectors

VectorData

VectorData VectorData
VectorData

Figure 1. Flow graph describing a basic parallel merge sort

computation.

 sorters[0]

Sort

Sort

Sort

Sort

Sort

master[0] (a) (b)

(c)

(d)

master[0]

master[0]

master[0] sorters[0]

sorters[1]

sorters[0]

sorters[1]

master[0]

Figure 2. Successive states of the unfolded flow graph of the

parallel merge sort application. The master thread collection

contains a single thread while the sorters thread collection

contains two threads.

Operations within a flow graph are carried out by threads. Each

thread may have an associated state, which is accessible to all the

operations it executes. Threads are grouped within thread collec-

tions, enabling groups of threads that play distinct roles within the

application to be indexed independently. The flow graph together

with the thread collections determine the actual deployment of the

computations on the compute nodes. This representation, the un-

folded flow graph of the application, is known only at runtime.

Figure 2 illustrates various stages of the application as its flow

graph unfolds. The SplitVector and MergeVectors operations run

on a thread collection master that contains a single thread while

the sorters thread collection on which Sort operations run con-

tains two threads.

By transferring messages as soon as they are computed, and main-

taining queues of arriving messages, execution of DPS applica-

tions is fully pipelined and asynchronous. Messages are associ-

ated with the thread executing the operations that will consume

them. This macro data flow behavior enables automatic overlap-

ping of communications and computations.

DPS applications are written in C++. Messages are C++ objects

serialized using an efficient and automatic data serialization

mechanism which supports complex data types such as circular

linked lists. Each message has a unique identifier [8]. Network

transfers are carried out on separate threads, enabling the auto-

matic overlapping of communications and computations. Com-

munications rely on TCP/IP, and we assume that messages are

neither lost nor corrupted. However, the DPS framework provides

no guarantee about the ordering of delivery of the messages.

3. ARCHITECTURE
The debugging functionality is provided via two independent

components. The first, the debugger, is a standalone Java program

to which the parallel application connects upon startup. It receives

and displays information about the current state of the application,

which the developer may use to influence future computations.

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
 Testing and Debugging (PADTAD'07), 2007, pp. 14-20

The second component is the debugging support within the appli-

cation, which mainly consists in hooks that send notifications to

the debugger. These hooks are integrated into the DPS runtime

and are enabled at compilation time. All applications may there-

fore automatically benefit from the debugging functionality with-

out requiring any modification. When the hooks are enabled, an

extra parameter added to the application command line specifies

the location of the debugger. All instances then open a connection

to the debugger upon startup. Figure 3 illustrates a debugging

session with an application running on three compute nodes,

while the debugger runs on a fourth compute node.

The application communicates several types of information to the

debugger. Upon startup, the application first creates the thread

collections and the flow graph, and sends both pieces of informa-

tion to the debugger. During its execution, the application gener-

ates a send notification for every message it sends. The notifica-

tion contains a copy of the message. The reception of messages is

notified via a recv notification containing the message identifier.

Additional notifications are sent every time an operation starts or

stops processing a message (opStart and opStop notifications).

Since different operations may run on different threads, each

thread is responsible for sending the notifications related to the

operations it executes and to the messages that they produce. The

send, opStart and opStop notifications must then be acknowledged

by the debugger for the thread to continue executing its operations.

By holding a specific acknowledgment, the debugger may there-

fore suspend the execution of the corresponding thread while the

rest of the application keeps executing. The debugger also uses

acknowledge messages to transmit information back to the appli-

cation and to influence the future computation steps.

Suspending the execution of threads until the reception of an ac-

knowledgement also guarantees that the debugger receives caus-

ally dependent notifications in the correct order. An operation

does not send a message over the network before the debugger

received and acknowledged the corresponding send notification.

Messages sent to a given processing thread may be received by

different communication threads, which send each a correspond-

ing recv notification after adding the message to the thread’s

pending message queue. Since we use of a single TCP connection

between the debugger and each application instance, and since

TCP guarantees that data sent over a single connection is not re-

ordered [19], the order of reception of recv notifications at the

debugger matches the order in which messages are delivered to

the thread. Similarly, the debugger cannot receive an opStart noti-

fication before the corresponding recv notification.

4. FEATURES AND FUNCTIONALITY
The user interface of the debugger is shown in Figure 4. The main

area displays the current state of the application in the form of its

partially unfolded flow graph as illustrated in Figure 2. Operation

names and the thread they run on also appear to identify the dif-

ferent operations. The view is updated every time the debugger

receives a notification. Operations are drawn in different colors to

indicate their status, such as idle, breakpointed or running.

When the application starts, the debugger holds the acknowledg-

ment for the input message of the first operation in the flow graph.

A Continue button then enables the developer to resume the ap-

plication execution. From that point, the default behavior of the

debugger is to immediately acknowledge all notifications, allow-

ing the application to continue until completion. Several mecha-

nisms are provided to control the execution. The first is the

"Global Step-by-Step" mode. When enabled, the debugger holds

all acknowledgments, thereby suspending all threads of the appli-

cation. Pushing the Continue button (Figure 4, top left) then sends

one acknowledgment to each thread, which then executes until it

sends another notification to the debugger. Steps are therefore

taken at the operation level rather than at the instruction level.

This mode allows advancing quickly through the execution while

still allowing the developer to take action on every notification.

The second execution control mechanism offers a finer grain of

control using operation breakpoints that break on opStart notifi-

cations from a particular operation running on a particular thread.

These breakpoints are derived from the flow graph and the thread

collections sent to the debugger upon application startup: given an

operation in the application flow graph and its thread collection,

the debugger displays the list of threads within which the opera-

tion may run. Each operation breakpoint has an associated box,

which may be checked to set the breakpoint and instruct the de-

bugger to hold the acknowledgments of the matching opStart

notifications. The Continue button next to each activated opera-

tion breakpoint is enabled when the breakpoint is hit, i.e. when

 Host 1

DPS application

instance

Host 2

DPS application

instance

Host 3

DPS application

instance

Host 4

Debugger

Network traffic within application

Network traffic with debugger

Figure 3. During a debugging session, each application in-

stance opens a connection to the debugger in addition to the

ones required for executing the application.

Figure 4. The graphical user inte

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD'07), 2007, pp. 14-20

the debugger receives a matching opStart notification. Pressing

the button then resumes the operation execution. Figure 5 shows

the list of operation breakpoints for the flow graph of our merge

sort example.

While looking for a bug, it is often useful to study one particular

path in the application. That is, when looking at an operation we

follow its output message to the successor operation, then to the

next, etc., while ignoring what is happening in the rest of the ap-

plication. Such a behavior is enabled by tracing the messages

generated by a breakpointed operation. This is done by checking

the right-hand side box of an operation breakpoint (Figure 5, right

part). When the debugger resumes the execution, the tracing flag

is piggybacked on the acknowledgment, causing all the send noti-

fications generated by the operation to have a tracing flag set.

From this moment onwards, when the debugger receives an op-

Start notification containing the identifier of a traced message, it

automatically sets the breakpoint of the triggered operation and

holds the acknowledgment. All the successors of an operation in

the unfolded flow graph are therefore automatically breakpointed,

enabling the developer to navigate through one particular branch

of the graph. The trace box can then be unchecked individually

for every operation breakpoint, allowing the programmer to focus

on the problem he is debugging. This is particularly helpful when

a traced message enters a split operation. Since all the outputs of

the split will be traced, many operation breakpoints will be set

simultaneously.

A second tab displays the list of running application threads, ena-

bling the developer to hide specific threads (or groups of threads

such as thread collections) that do not need to be monitored. The

operations running on hidden threads are also hidden from the

flow graph view, as well as from the list of operation breakpoints.

The debugger also ignores (i.e. immediately acknowledges) all

notifications from hidden threads.

4.1 Influencing the application execution
Each thread has a FIFO queue that holds the messages awaiting

processing (Figure 6, Thread Queue). Such queues may form

when a thread is blocked by the debugger, or when the processing

time of messages is significant. Reordering the messages con-

tained in the queue therefore changes their processing order on the

thread, which allows testing the application for message races. A

new modified ordering is transmitted back to the thread along

with the acknowledgment, and messages are reordered in the

FIFO accordingly. The ability to hide specific threads is a conven-

ient way to use that feature: as the execution of hidden threads is

unhindered, all the messages they send to visible threads will

accumulate in their pending message queue, providing the devel-

oper with an instantaneous view of sets of messages that may race.

When the number of messages is large, the number of possible

orderings explodes. However, if communication links are FIFO or

if the debugger has additional knowledge about whether opera-

tions read or modify the thread state, partial order reduction tech-

niques can be used to provide the developer with a shorter list of

orderings [20].

At any moment, the developer may select an operation in the flow

graph. This updates the content of the three remaining tabs in

Figure 6. The Op Queue tab displays the messages from the

thread queue that are to be processed by the selected operation.

The Processed tab lists all the messages which have been re-

ceived and processed by this operation since the beginning of the

application execution. Finally, the Sent tab displays all the mes-

sages which have been sent by the operation. The queues identify

each message by displaying its type, as well as the name of the

source and destination operations and threads.

Selecting a message in any one of the lists displays its content in a

tree view similar to the ones found in traditional sequential de-

buggers (Figure 7). This is made possible by using a specialized

textual serializer to serialize data objects transferred from the

application to the debugger. The textual serialization avoids byte-

ordering and internal data representation issues between hosts

running the C++ application and the Java debugger. Therefore,

the debugger and the parallel application can run on different

operating systems and hardware. Since the debugger has no

knowledge about the types and structure of the data objects used

by the application, the textual serializer adds the necessary typing

and variable name information to the data.

Thread states are also stored in serializable data objects identical

to the ones transferred between operations [8]. The developer may

therefore also retrieve the state of a suspended thread at any time

by double-clicking on the corresponding thread in the thread list.

The request is piggybacked on the acknowledgment for the pend-

ing notification of the selected thread. The thread then sends a

Figure 5. List of operation breakpoints for the merge sort

example. Since the thread collection sorters contains two

threads, the Sort operation has two associated operation

breakpoints. The SplitVector and MergeResults operations can

be breakpointed on the unique thread of the master thread

collection. The Continue button and Trace checkbox are en-

abled when the breakpoint is hit.

Figure 6. Message lists. A single message is pending on the

sorters[0] thread.

Figure 7. View of a data object used by our parallel merge

sort example. The value of target is being edited. Integers are

stored in an actual C++ standard library vector.

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD'07), 2007, pp. 14-20

copy of its state to the debugger, which may then display it in a

tree view similar to the one displayed in Figure 7.

If the developer selects an operation that is suspended on a send

notification, the corresponding message is highlighted in the Sent

list. The send notifications are sent before delivering the message

to the communication layer. The developer may therefore modify

the message from within the debugger before its transfer to the

next operation. The modified message is then sent back to the

suspended thread together with the acknowledgment. The thread

then discards the original message and replaces it with the one

received from the debugger. This scheme allows the developer to

alter messages so as to modify the behavior of the application. In

Figure 7, the target field specifies the index of the thread that will

sort the partial vector. That target value could for instance be set

such that it balances the load among the threads. The developer

could therefore change that value to test that its application makes

no a priori assumption about which thread will process the mes-

sage.

The developer may additionally specify message breakpoints by

indicating a message type and a particular value in a field of that

message. Every time the debugger receives a send notification, it

tries to match each message breakpoint against the enclosed mes-

sage. If it succeeds, it simply holds the acknowledgment for the

received notification.

4.2 Operation level debugging
While all the features described so far enable controlling the ap-

plication at the flow graph level, it is often useful to inspect the

content of individual operations. For this purpose, double-clicking

a breakpointed operation opens a remote connection to the host

running the application instance, attaches a user-specified sequen-

tial debugger to the running process and sets a breakpoint in the

suspended operation (several operations may be inspected simul-

taneously). Figure 8 illustrates this situation when DDD [5] is

used as the sequential debugger.

5. DEBUGGING EXAMPLE
This section shows how the debugger can be used to discover a

message race within a neighborhood-dependent parallel applica-

tion such as a parallel game of life or a parallel finite element

computation. Figure 9 displays the unfolded flow graph of one

iteration of the application. The three threads of the proc thread

collection store each one third of the processed data domain. Each

thread sends a “send border” request to its two neighbors. The

neighbors send back a copy of their subdomain border (Send bor-

der operation). The computation of the new state of the subdo-

main (Update) is performed once both borders have been received.

In order to test his application, the developer sets an operation

breakpoint on the split operation on thread proc[1]. When proc[1]

is about to start the split operation that sends “send border” re-

quests, it sends an opStart notification to the debugger, which hits

the breakpoint. As the other threads keep executing, their mes-

sages requesting the borders appear in the pending message queue

of proc[1]. The developer then moves the two requests in front of

the input message of the split operation in the queue. Once the

new ordering is uploaded to the thread and the messages have

been reordered accordingly in the queue, proc[1] sends back a

new opStart notification saying it is about to start executing a

Send border operation. Since this operation is not breakpointed,

and assuming that the Global Step By Step mechanism is not

enabled, the notification is immediately acknowledged. The exe-

cution of proc[1] is suspended once again when both border ex-

change requests have been processed. At that point, both proc[0]

and proc[2] have received the borders from their neighbors and

start updating their part of the domain. From that moment, no

matter when proc[1] is resumed, its neighbors will process its

requests for borders after they have updated their state (Figure 10).

Figure 8. Debugging a single operation with DDD.

 main[0] proc[0]

border exchange state update

Update

Send bord.

Send bord.

Send bord.

Send bord.

Send bord.

Send bord.

Update

Update

main[0]

proc[1]

proc[2]

Figure 9. The flow graph of one iteration of a neighborhood

dependent parallel computation (the communications between

threads proc[0] and proc[2] wrap around). Each thread of proc

stores one third of the processed data domain.

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
 Testing and Debugging (PADTAD'07), 2007, pp. 14-20

In this example, the flow graph of Figure 9 enforces no synchro-

nization between the border exchange and state update phases,

causing a delay in the delivery of a single message to produce an

erroneous execution. Since the content of messages (1) and (2) is

used to update the state of proc[1], transferring subdomain bor-

ders after they have been updated causes an error in the computa-

tion. Here the race may be revealed either by looking at the final

state of the thread, or by tracing messages starting from the split

operation breakpoint and looking at the content of the messages

containing the borders received by proc[1].

6. SCALABILITY ISSUES AND FUTURE

WORK
Since it must receive, process and acknowledge all the notifica-

tions sent by the application threads, the debugger may quickly

become a bottleneck when the number of threads grows. Meas-

urements for the flow graph described in section 5 running on 2

compute nodes show that the parallel application runs 170 times

slower when the debugger is active and iterations are short (i.e. 22

ms per iteration). The slowdown drops to 2.7 with more intensive

computations (i.e. 2 s per iteration). The corresponding slowdown

factors are respectively 390 and 9 when the application runs on 8

compute nodes. The overhead is therefore particularly significant

for applications performing many short-lived operations.

One possible solution would be to distribute parts of the debugger

functionality such as message and operation breakpoint evaluation

within the threads, or within debugger servers running on the

compute nodes. It would then no longer be necessary to system-

atically send all messages and all notifications to the debugger,

thereby reducing the load of both the debugger and the network.

The full functionality would then only be enabled on demand for

specific application parts.

Another challenge consists in displaying the flow graph informa-

tion for a large number of threads. Currently, when hiding specific

threads, the programmer also loses the ability to control their exe-

cution. This should be overcome by decoupling the processing of

notifications from the visibility of the thread. Furthermore, in

future releases of the software, we intend to offer the possibility

of collapsing a matching split-merge pairs of operations into a

single node.

The built-in fault-tolerance mechanism of DPS [8] supports the

checkpointing of individual threads. Enabling the developer to

take checkpoints of its application may in the future add signifi-

cant value to the debugger. Taking global snapshots of the current

state of the application allows the developer to roll back to it later

without reexecuting the whole application. Multiple snapshots

could be differentiated using thumbnails of their respective flow

graph views. Combined with the reordering or with the modifica-

tion of messages, this feature would enable interactively testing

multiple execution scenarios within a specific part of the whole

application. The debugger may then retrieve the thread states after

the execution of each ordering and automatically compare and

highlight differences between the final states to reveal message

races.

Since the flow graph description provide the debugger with a full

knowledge about the causality between the executed operations, it

would also be possible to undo a specific operation and determine

which causally dependent operations must also be undone to

maintain a consistent state, thereby providing a finer grain of

control while stepping back to previous execution states.

7. CONCLUSION
We have presented a debugger for flow graph based parallel ap-

plications. By dynamically drawing the application flow graph as

it unfolds, it enables the programmer to easily see the state of the

execution as well as the status of every thread and operation. Gen-

eral features like operation and message breakpoints, operation

inspection using a sequential debugger and message queue in-

spection provide the developer with much insight. The message

tracing functionality allows focusing on messages and computa-

tions on a given branch of the flow graph while ignoring compu-

tations occurring in the rest of the application.

The ability to influence the application through the reordering or

modification of messages provides the developer with full control

over the execution of the application. This control can be used to

execute cases that occur only rarely in practice and compare exe-

cution outcomes, for example for testing the presence of message

races within the parallel application.

The Dynamic Parallel Schedules framework and its debugger are

freely available at http://dps.epfl.ch.

8. ACKNOWLEDGEMENTS
The authors would like to thank the reviewers for their valuable

comments.

9. REFERENCES
[1] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P.

Miller, M. Schulz, Stack Trace Analysis for Large Scale

Debugging, Proceedings of the 21st International Parallel

and Distributed Processing Symposium (IPDPS'07), p.64,

Long Beach, CA, March 2007

[2] S. M. Balle, B. R. Brett, C.-P. Chen, D. LaFrance-Linden,

Extending a traditional debugger to debug massively parallel

applications, Journal of Parallel and Distributed Computing,

vol. 64, pp. 617-628, 2004

[3] J.-D. Choi, S. L. Min, Race Frontier: reproducing data races

in parallel-program debugging, Proceedings of the 3rd ACM

SIGPLAN symposium on Principles and practice of parallel

programming (PPoPP’ 91), pp. 145-154, 1991

[4] J. Cownie, W. Gropp, A standard interface for debugger

access to message queue information in MPI, PVM/MPI, pp.

51-58, 1999

[5] Data Display Debugger, http://www.gnu.org/software/ddd

 main[0]

(1)

(2)

(a)

(b)

(c)

Update
Send

Update

Update

Send

Send

Send

Send

Send

main[0] proc[0]

proc[1]

proc[2]

Figure 10. If the processing of the split operation (a) on proc[1]

is delayed, the state of proc[0] and proc[2] is read by (b) and (c)

after having been updated.

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD'07), 2007, pp. 14-20

[6] Etnus, LLC. TotalView, http://www.etnus.com/TotalView

[7] S. Gerlach, R. D. Hersch, DPS - Dynamic Parallel Schedules,

Proceedings of the 17th International Parallel and Distrib-

uted Processing Symposium (IPDPS'03), Workshop on

High-Level Parallel Programming Models and Supportive

Environments (HIPS), pp. 15-24, Nice, France, April 2003,

see also http://dps.epfl.ch

[8] S. Gerlach, R.D. Hersch, Fault-tolerant Parallel Applications

with Dynamic Parallel Schedules, Proceedings of the 19th

International Parallel and Distributed Processing Sympo-

sium (IPDPS’05), Workshop on Dependable Parallel, Dis-

tributed and Network-Centric Systems (DPDNS), p. 278b,

2005

[9] R. Hood, The p2d2 Project: Building a Portable Distributed

Debugger, SIGMETRICS Symposium on Parallel and Dis-

tributed Tools (SPDT), pp. 127-136, Philadelphia, PA, 1996

[10] C.-E. Hong, B.-S. Lee, G.-W. On, D.-H. Chi, Replay for

debugging MPI parallel programs, Proceedings of the MPI

Developer's Conference, pp. 156-160, July 1996

[11] R. Jyothi, O. S. Lawlor, L. V. Kalé, Debugging Support for

Charm++, Proceedings of the 18th International Parallel

and Distributed Symposium (IPDPS'04), Parallel and Dis-

tributed Systems: Testing and Debugging Workshop (PAD-

TAD), p. 294, 2004

[12] R. Kilgore, C. Chase. Re-execution of distributed programs

to detect bugs hidden by racing messages. Proceedings of

the 30th Hawaii International Conference on System Sci-

ences (HICCS), vol. 1, p. 423, 1997

[13] E. Kraemer, J. T. Stasko, The Visualization of Parallel Sys-

tems: An Overview, Journal of Parallel And Distributed

Computing, vol. 18, pp. 105-117, 1993

[14] D. Kranzlmüller, Scalable Parallel Program Debugging with

Process Isolation and Grouping, Proceedings of the 16th In-

ternational Parallel and Distributed Symposium (IPDPS'02),

pp. 109-115, April 2002

[15] T. J. LeBlanc, J. M. Mellor-Crumey, Debugging parallel

programs with instant replay, IEEE Transactions on Com-

puters, C36 (4), pp. 471-481, April 1987.

[16] T. J. LeBlanc, J. M. Mellor-Crumey, R. J. Fowler, Analyz-

ing Parallel Programs Execution Using Multiple Views,

Journal of Parallel and Distributed Computing, vol. 9 (2) ,

pp. 203-217, 1990

[17] S. S. Lumetta, D. E. Culler, The Mantis Parallel Debugger,

SIGMETRICS Symposium on Parallel and Distributed Tools

(SPDT), pp. 118-126, Philadelphia, PA, 1996

[18] Parallel Programming Laboratory, University of Illinois,

Urbana-Champaign, The Charm++ Programming Lan-

guage, Version 6.0, Jan 2004

[19] J. Postel, Transmission Control Protocol, RFC 793, Sept.

1981

[20] B. Schaeli, S. Gerlach, R.D. Hersch, Decomposing Partial

Order Execution Graph to Improve Message Race Detection,

Proceedings of the, 21st International Parallel and Distrib-

uted Processing Symposium (IPDPS’07), Workshop on

High-Level Parallel Programming Models and Supportive

Environments (HIPS-TOPMoDRS), p. 187, Long Beach, CA,

March 2007

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra,

MPI: The Complete Reference (Vol. 1), 2nd edition, MIT

Press, 1998.

[22] N. Thoai, D. Kranzlmüller, J. Volkert, Shortcut Replay, A

Replay Technique for Debugging Long-Running Parallel

Programs, Proceedings of the 7th Asian Computing Science

Conference on Advances in Computing Science, Lecture

Notes In Computer Science, vol. 2550, pp. 34-46, 2002

[23] Q. Zheng, G. Cheng, L. Huang, Optimal record and replay

for debugging of nondeterministic MPI/PVM programs,

Proceedings of the 4th International Conference on High

Performance Computing in the Asia-Pacific Region, vol. 1,

pp. 473-475, May 2000

International Symposium on Software Testing and Analysis (ISSTA'07), Proc ACM Workdshop on Parallel and Distributed Systems:
Testing and Debugging (PADTAD'07), 2007, pp. 14-20

