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ABSTRACT 
Flow graphs provide an explicit description of the parallelization 

of an application by mapping vertices onto serial computations 

and edges onto message transfers. We present the design and im-

plementation of a debugger for the flow graph based Dynamic 

Parallel Schedules (DPS) parallelization framework. We use the 

flow graph to provide both a high level and detailed picture of the 

current state of the application execution. We describe how reor-

dering incoming messages enables testing for the presence of 

message races while debugging a parallel application. The knowl-

edge about causal dependencies between messages enables track-

ing messages and computations along individual branches of the 

flow graph. In addition to common features such as restricting the 

analysis to a subset of threads or processes and attaching sequen-

tial debuggers to running processes, the proposed debugger also 

provides support for message alterations and for message content 

dependent breakpoints. 

1. INTRODUCTION 
Parallel applications are vulnerable to types of errors to which 

single-threaded applications are immune. Most of these errors 

stem from the non-deterministic orderings of events within the 

application. Common representative of such errors are deadlocks, 

when conflicts over resources prevent the application from mov-

ing forward, and message races, when reordering the order of 

delivery of messages changes the result of the computation. Paral-

lel application debuggers should therefore provide tools to test 

and analyze such specific errors. Moreover, the recent advent of 

large-scale systems requires new solutions that filter, aggregate 

and preprocess the overwhelming amount of information deliv-

ered to the developer. 

Several contributions discuss the importance of using multiple 

abstraction levels for parallel program debugging [13, 14, 16]. 

They describe interesting parallel debugging concepts, such as 

process isolation, time-process communication graphs and call 

graph representations of the underlying parallel program execu-

tion. 

Other debugging tools explicitly target large-scale systems. One 

tool [2] focuses on aggregating the textual output of the different 

processes and another tool [1] aggregates their stack trace to iden-

tify processes which, despite being identical, behave differently. 

In their case study, the authors of [1] use their tool in order to 

identify a subset of processes that have an erroneous behavior, 

and then use a distinct full featured debugger to further analyze 

these processes. 

Multiple full-featured interactive parallel debuggers have been 

described in the literature, e.g. Mantis [17], TotalView [6] and 

p2d2 [9]. All support the isolation of specific processes, as well as 

attaching a sequential debugger to remote application instances, 

which enables breakpoints to be set in individual processes. To-

talView also supports the inspection of message queues in MPI 

programs [4], [21]. Message queue inspection is also available in 

the debugger for the Charm++ parallel application development 

framework [11]. In the latter case, the integration with the 

Charm++ parallel runtime enables higher-level features such as 

setting breakpoints on remote entry points [18]. While these tools 

provide the developer with detailed information about the applica-

tion execution, none of them provides an instantaneous high-level 

picture of the current state of the application execution. 

The detection and debugging of message races received much 

attention from researchers. However, most work focuses on re-

cord and replay techniques to enable reproducing a race once it 

has been detected [3, 10, 15, 21, 22]. Few proposals explicitly test 

different message delivery orderings, and none of them has been 

integrated within a debugger [12, 19]. 

The debugger described in the present contribution targets appli-

cations developed using the Dynamic Parallel Schedules (DPS) 

parallelization framework [7]. The parallel structure of these ap-

plications is described as an acyclic directed graph that specifies 

the dependencies between messages and computations. By dis-

playing the current state of the graph, the debugger can provide 

the application developer with much information in a compact 

form. In order to change the ordering of computations, we allow 

the reordering of messages that await processing. For this purpose, 

we provide several types of breakpoints which suspend the execu-

tion of specific threads and let messages accumulate in the queues. 

Our tool therefore enables controlling the application execution 

such that execution scenarios that occur only rarely in actual exe-

cutions can be explicitly tested. In addition to the aforementioned 

features (isolating processes, attaching sequential debuggers, set-

ting high-level operation breakpoints and inspecting message 

queues), we describe the following original contributions: 

• The content of messages can be modified from within the 

debugger. In addition, we use knowledge about the structure 

of the transferred data to create conditional breakpoints rely-

ing on specific data values within the messages. 

• Our debugger supports the reordering of messages, enabling 

testing for message races. 
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• The graph representation of an application provides an in-

stantaneous feedback of the current state of the execution. 

While such a representation is natural for data flow lan-

guages, it is the first time that this representation is used in 

the context of parallel application debugging. 

• The graph also defines the causality between events occur-

ring during the parallel application execution. We use that 

knowledge to trace sequences of causally dependent mes-

sages, i.e. we study successions of messages and operations 

along a single branch of the flow graph. 

Although the current discussion is carried out in the context of 

DPS applications, the notions of message content based debug-

ging and of message reordering can be applied to any message-

passing programming model. 

The rest of the paper is organized as follows. Section 2 presents 

the Dynamic Parallel Schedules programming model. Section 3 

describes the general architecture of the debugger, and Section 4 

describes its features. An example of utilization is then provided 

in Section 5. Issues regarding the scalability of the debugger as 

well as the future work are mentioned in Section 6. Section 7 

draws the conclusions. 

2. DYNAMIC PARALLEL SCHEDULES 
DPS describes a distributed memory parallel computation as a 

flow graph composed of serial operations arranged to form an 

acyclic directed graph. The edges are defined by the message 

types that transit between operations. The flow graph describes 

the asynchronous flow of data between operations. 

The particular implementation of operations is left to the devel-

oper, but each operation must be of one of four fundamental types: 

leaf, split, merge or stream. Leaf operations accept a single input 

and generate a single output message. Split operations take one 

input message and generate one or several output messages. 

Merge operations expect one or several input messages, and gen-

erate a single output messages once all expected messages have 

been received. The fourth operation type, the stream, puts no re-

striction on the number of input and output messages and allows 

the programmer to refine the synchronization granularity by 

streaming out new messages as soon as specific groups of incom-

ing messages have been received. 

Figure 1 shows the flow graph of a simple parallel merge sort 

application. It is composed of a custom split operation that re-

ceives a vector of integers as input and partitions it into parts 

(SplitVector). A leaf operation then sorts the vector parts (Sort), 

and a merge operation aggregates the results into a single sorted 

vector (MergeVectors). Communications are performed using 

messages of a single type. 

 

Leaf 
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VectorData VectorData 
VectorData 

 

Figure 1. Flow graph describing a basic parallel merge sort 

computation. 

 sorters[0] 

Sort 

Sort 

Sort 

Sort 

Sort 

master[0] (a) (b) 

(c) 

(d) 

master[0] 

master[0] 

master[0] sorters[0] 

sorters[1] 

sorters[0] 

sorters[1] 

master[0] 

 

Figure 2. Successive states of the unfolded flow graph of the 

parallel merge sort application. The master thread collection 

contains a single thread while the sorters thread collection 

contains two threads. 

Operations within a flow graph are carried out by threads. Each 

thread may have an associated state, which is accessible to all the 

operations it executes. Threads are grouped within thread collec-

tions, enabling groups of threads that play distinct roles within the 

application to be indexed independently. The flow graph together 

with the thread collections determine the actual deployment of the 

computations on the compute nodes. This representation, the un-

folded flow graph of the application, is known only at runtime. 

Figure 2 illustrates various stages of the application as its flow 

graph unfolds. The SplitVector and MergeVectors operations run 

on a thread collection master that contains a single thread while 

the sorters thread collection on which Sort operations run con-

tains two threads. 

By transferring messages as soon as they are computed, and main-

taining queues of arriving messages, execution of DPS applica-

tions is fully pipelined and asynchronous. Messages are associ-

ated with the thread executing the operations that will consume 

them. This macro data flow behavior enables automatic overlap-

ping of communications and computations. 

DPS applications are written in C++. Messages are C++ objects 

serialized using an efficient and automatic data serialization 

mechanism which supports complex data types such as circular 

linked lists. Each message has a unique identifier [8]. Network 

transfers are carried out on separate threads, enabling the auto-

matic overlapping of communications and computations. Com-

munications rely on TCP/IP, and we assume that messages are 

neither lost nor corrupted. However, the DPS framework provides 

no guarantee about the ordering of delivery of the messages. 

3. ARCHITECTURE 
The debugging functionality is provided via two independent 

components. The first, the debugger, is a standalone Java program 

to which the parallel application connects upon startup. It receives 

and displays information about the current state of the application, 

which the developer may use to influence future computations. 
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The second component is the debugging support within the appli-

cation, which mainly consists in hooks that send notifications to 

the debugger. These hooks are integrated into the DPS runtime 

and are enabled at compilation time. All applications may there-

fore automatically benefit from the debugging functionality with-

out requiring any modification. When the hooks are enabled, an 

extra parameter added to the application command line specifies 

the location of the debugger. All instances then open a connection 

to the debugger upon startup. Figure 3 illustrates a debugging 

session with an application running on three compute nodes, 

while the debugger runs on a fourth compute node. 

The application communicates several types of information to the 

debugger. Upon startup, the application first creates the thread 

collections and the flow graph, and sends both pieces of informa-

tion to the debugger. During its execution, the application gener-

ates a send notification for every message it sends. The notifica-

tion contains a copy of the message. The reception of messages is 

notified via a recv notification containing the message identifier. 

Additional notifications are sent every time an operation starts or 

stops processing a message (opStart and opStop notifications). 

Since different operations may run on different threads, each 

thread is responsible for sending the notifications related to the 

operations it executes and to the messages that they produce. The 

send, opStart and opStop notifications must then be acknowledged 

by the debugger for the thread to continue executing its operations. 

By holding a specific acknowledgment, the debugger may there-

fore suspend the execution of the corresponding thread while the 

rest of the application keeps executing. The debugger also uses 

acknowledge messages to transmit information back to the appli-

cation and to influence the future computation steps. 

Suspending the execution of threads until the reception of an ac-

knowledgement also guarantees that the debugger receives caus-

ally dependent notifications in the correct order. An operation 

does not send a message over the network before the debugger 

received and acknowledged the corresponding send notification. 

Messages sent to a given processing thread may be received by 

different communication threads, which send each a correspond-

ing recv notification after adding the message to the thread’s 

pending message queue. Since we use of a single TCP connection 

between the debugger and each application instance, and since 

TCP guarantees that data sent over a single connection is not re-

ordered [19], the order of reception of recv notifications at the 

debugger matches the order in which messages are delivered to 

the thread. Similarly, the debugger cannot receive an opStart noti-

fication before the corresponding recv notification. 

4. FEATURES AND FUNCTIONALITY 
The user interface of the debugger is shown in Figure 4. The main 

area displays the current state of the application in the form of its 

partially unfolded flow graph as illustrated in Figure 2. Operation 

names and the thread they run on also appear to identify the dif-

ferent operations. The view is updated every time the debugger 

receives a notification. Operations are drawn in different colors to 

indicate their status, such as idle, breakpointed or running. 

When the application starts, the debugger holds the acknowledg-

ment for the input message of the first operation in the flow graph. 

A Continue button then enables the developer to resume the ap-

plication execution. From that point, the default behavior of the 

debugger is to immediately acknowledge all notifications, allow-

ing the application to continue until completion. Several mecha-

nisms are provided to control the execution. The first is the 

"Global Step-by-Step" mode. When enabled, the debugger holds 

all acknowledgments, thereby suspending all threads of the appli-

cation. Pushing the Continue button (Figure 4, top left) then sends 

one acknowledgment to each thread, which then executes until it 

sends another notification to the debugger. Steps are therefore 

taken at the operation level rather than at the instruction level. 

This mode allows advancing quickly through the execution while 

still allowing the developer to take action on every notification. 

The second execution control mechanism offers a finer grain of 

control using operation breakpoints that break on opStart notifi-

cations from a particular operation running on a particular thread. 

These breakpoints are derived from the flow graph and the thread 

collections sent to the debugger upon application startup: given an 

operation in the application flow graph and its thread collection, 

the debugger displays the list of threads within which the opera-

tion may run. Each operation breakpoint has an associated box, 

which may be checked to set the breakpoint and instruct the de-

bugger to hold the acknowledgments of the matching opStart 

notifications. The Continue button next to each activated opera-

tion breakpoint is enabled when the breakpoint is hit, i.e. when 

 Host 1 

DPS application 
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Host 2 

DPS application 

instance 

Host 3 

DPS application 
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Host 4 

Debugger 

Network traffic within application 

Network traffic with debugger 

 

Figure 3. During a debugging session, each application in-

stance opens a connection to the debugger in addition to the 

ones required for executing the application. 

 

 

Figure 4. The graphical user inte
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the debugger receives a matching opStart notification. Pressing 

the button then resumes the operation execution. Figure 5 shows 

the list of operation breakpoints for the flow graph of our merge 

sort example. 

While looking for a bug, it is often useful to study one particular 

path in the application. That is, when looking at an operation we 

follow its output message to the successor operation, then to the 

next, etc., while ignoring what is happening in the rest of the ap-

plication. Such a behavior is enabled by tracing the messages 

generated by a breakpointed operation. This is done by checking 

the right-hand side box of an operation breakpoint (Figure 5, right 

part). When the debugger resumes the execution, the tracing flag 

is piggybacked on the acknowledgment, causing all the send noti-

fications generated by the operation to have a tracing flag set. 

From this moment onwards, when the debugger receives an op-

Start notification containing the identifier of a traced message, it 

automatically sets the breakpoint of the triggered operation and 

holds the acknowledgment. All the successors of an operation in 

the unfolded flow graph are therefore automatically breakpointed, 

enabling the developer to navigate through one particular branch 

of the graph. The trace box can then be unchecked individually 

for every operation breakpoint, allowing the programmer to focus 

on the problem he is debugging. This is particularly helpful when 

a traced message enters a split operation. Since all the outputs of 

the split will be traced, many operation breakpoints will be set 

simultaneously. 

A second tab displays the list of running application threads, ena-

bling the developer to hide specific threads (or groups of threads 

such as thread collections) that do not need to be monitored. The 

operations running on hidden threads are also hidden from the 

flow graph view, as well as from the list of operation breakpoints. 

The debugger also ignores (i.e. immediately acknowledges) all 

notifications from hidden threads. 

4.1 Influencing the application execution 
Each thread has a FIFO queue that holds the messages awaiting 

processing (Figure 6, Thread Queue). Such queues may form 

when a thread is blocked by the debugger, or when the processing 

time of messages is significant. Reordering the messages con-

tained in the queue therefore changes their processing order on the 

thread, which allows testing the application for message races. A 

new modified ordering is transmitted back to the thread along 

with the acknowledgment, and messages are reordered in the 

FIFO accordingly. The ability to hide specific threads is a conven-

ient way to use that feature: as the execution of hidden threads is 

unhindered, all the messages they send to visible threads will 

accumulate in their pending message queue, providing the devel-

oper with an instantaneous view of sets of messages that may race. 

When the number of messages is large, the number of possible 

orderings explodes. However, if communication links are FIFO or 

if the debugger has additional knowledge about whether opera-

tions read or modify the thread state, partial order reduction tech-

niques can be used to provide the developer with a shorter list of 

orderings [20]. 

At any moment, the developer may select an operation in the flow 

graph. This updates the content of the three remaining tabs in 

Figure 6. The Op Queue tab displays the messages from the 

thread queue that are to be processed by the selected operation. 

The Processed tab lists all the messages which have been re-

ceived and processed by this operation since the beginning of the 

application execution. Finally, the Sent tab displays all the mes-

sages which have been sent by the operation. The queues identify 

each message by displaying its type, as well as the name of the 

source and destination operations and threads. 

Selecting a message in any one of the lists displays its content in a 

tree view similar to the ones found in traditional sequential de-

buggers (Figure 7). This is made possible by using a specialized 

textual serializer to serialize data objects transferred from the 

application to the debugger. The textual serialization avoids byte-

ordering and internal data representation issues between hosts 

running the C++ application and the Java debugger. Therefore, 

the debugger and the parallel application can run on different 

operating systems and hardware. Since the debugger has no 

knowledge about the types and structure of the data objects used 

by the application, the textual serializer adds the necessary typing 

and variable name information to the data. 

Thread states are also stored in serializable data objects identical 

to the ones transferred between operations [8]. The developer may 

therefore also retrieve the state of a suspended thread at any time 

by double-clicking on the corresponding thread in the thread list. 

The request is piggybacked on the acknowledgment for the pend-

ing notification of the selected thread. The thread then sends a 

 

Figure 5. List of operation breakpoints for the merge sort 

example. Since the thread collection sorters contains two 

threads, the Sort operation has two associated operation 

breakpoints. The SplitVector and MergeResults operations can 

be breakpointed on the unique thread of the master thread 

collection. The Continue button and Trace checkbox are en-

abled when the breakpoint is hit. 

 

Figure 6. Message lists. A single message is pending on the 

sorters[0] thread. 

 

 

Figure 7. View of a data object used by our parallel merge 

sort example. The value of target is being edited. Integers are 

stored in an actual C++ standard library vector. 
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copy of its state to the debugger, which may then display it in a 

tree view similar to the one displayed in Figure 7. 

If the developer selects an operation that is suspended on a send 

notification, the corresponding message is highlighted in the Sent 

list. The send notifications are sent before delivering the message 

to the communication layer. The developer may therefore modify 

the message from within the debugger before its transfer to the 

next operation. The modified message is then sent back to the 

suspended thread together with the acknowledgment. The thread 

then discards the original message and replaces it with the one 

received from the debugger. This scheme allows the developer to 

alter messages so as to modify the behavior of the application. In 

Figure 7, the target field specifies the index of the thread that will 

sort the partial vector. That target value could for instance be set 

such that it balances the load among the threads. The developer 

could therefore change that value to test that its application makes 

no a priori assumption about which thread will process the mes-

sage. 

The developer may additionally specify message breakpoints by 

indicating a message type and a particular value in a field of that 

message. Every time the debugger receives a send notification, it 

tries to match each message breakpoint against the enclosed mes-

sage. If it succeeds, it simply holds the acknowledgment for the 

received notification. 

4.2 Operation level debugging 
While all the features described so far enable controlling the ap-

plication at the flow graph level, it is often useful to inspect the 

content of individual operations. For this purpose, double-clicking 

a breakpointed operation opens a remote connection to the host 

running the application instance, attaches a user-specified sequen-

tial debugger to the running process and sets a breakpoint in the 

suspended operation (several operations may be inspected simul-

taneously). Figure 8 illustrates this situation when DDD [5] is 

used as the sequential debugger. 

5. DEBUGGING EXAMPLE 
This section shows how the debugger can be used to discover a 

message race within a neighborhood-dependent parallel applica-

tion such as a parallel game of life or a parallel finite element 

computation. Figure 9 displays the unfolded flow graph of one 

iteration of the application. The three threads of the proc thread 

collection store each one third of the processed data domain. Each 

thread sends a “send border” request to its two neighbors. The 

neighbors send back a copy of their subdomain border (Send bor-

der operation). The computation of the new state of the subdo-

main (Update) is performed once both borders have been received. 

In order to test his application, the developer sets an operation 

breakpoint on the split operation on thread proc[1]. When proc[1] 

is about to start the split operation that sends “send border” re-

quests, it sends an opStart notification to the debugger, which hits 

the breakpoint. As the other threads keep executing, their mes-

sages requesting the borders appear in the pending message queue 

of proc[1]. The developer then moves the two requests in front of 

the input message of the split operation in the queue. Once the 

new ordering is uploaded to the thread and the messages have 

been reordered accordingly in the queue, proc[1] sends back a 

new opStart notification saying it is about to start executing a 

Send border operation. Since this operation is not breakpointed, 

and assuming that the Global Step By Step mechanism is not 

enabled, the notification is immediately acknowledged. The exe-

cution of proc[1] is suspended once again when both border ex-

change requests have been processed. At that point, both proc[0] 

and proc[2] have received the borders from their neighbors and 

start updating their part of the domain. From that moment, no 

matter when proc[1] is resumed, its neighbors will process its 

requests for borders after they have updated their state (Figure 10). 

 

Figure 8. Debugging a single operation with DDD. 
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Figure 9. The flow graph of one iteration of a neighborhood 

dependent parallel computation (the communications between 

threads proc[0] and proc[2] wrap around). Each thread of proc 

stores one third of the processed data domain.  
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In this example, the flow graph of Figure 9 enforces no synchro-

nization between the border exchange and state update phases, 

causing a delay in the delivery of a single message to produce an 

erroneous execution. Since the content of messages (1) and (2) is 

used to update the state of proc[1], transferring subdomain bor-

ders after they have been updated causes an error in the computa-

tion. Here the race may be revealed either by looking at the final 

state of the thread, or by tracing messages starting from the split 

operation breakpoint and looking at the content of the messages 

containing the borders received by proc[1]. 

6. SCALABILITY ISSUES AND FUTURE 

WORK 
Since it must receive, process and acknowledge all the notifica-

tions sent by the application threads, the debugger may quickly 

become a bottleneck when the number of threads grows. Meas-

urements for the flow graph described in section 5 running on 2 

compute nodes show that the parallel application runs 170 times 

slower when the debugger is active and iterations are short (i.e. 22 

ms per iteration). The slowdown drops to 2.7 with more intensive 

computations (i.e. 2 s per iteration). The corresponding slowdown 

factors are respectively 390 and 9 when the application runs on 8 

compute nodes. The overhead is therefore particularly significant 

for applications performing many short-lived operations. 

One possible solution would be to distribute parts of the debugger 

functionality such as message and operation breakpoint evaluation 

within the threads, or within debugger servers running on the 

compute nodes. It would then no longer be necessary to system-

atically send all messages and all notifications to the debugger, 

thereby reducing the load of both the debugger and the network. 

The full functionality would then only be enabled on demand for 

specific application parts. 

Another challenge consists in displaying the flow graph informa-

tion for a large number of threads. Currently, when hiding specific 

threads, the programmer also loses the ability to control their exe-

cution. This should be overcome by decoupling the processing of 

notifications from the visibility of the thread. Furthermore, in 

future releases of the software, we intend to offer the possibility 

of collapsing a matching split-merge pairs of operations into a 

single node.  

The built-in fault-tolerance mechanism of DPS [8] supports the 

checkpointing of individual threads. Enabling the developer to 

take checkpoints of its application may in the future add signifi-

cant value to the debugger. Taking global snapshots of the current 

state of the application allows the developer to roll back to it later 

without reexecuting the whole application. Multiple snapshots 

could be differentiated using thumbnails of their respective flow 

graph views. Combined with the reordering or with the modifica-

tion of messages, this feature would enable interactively testing 

multiple execution scenarios within a specific part of the whole 

application. The debugger may then retrieve the thread states after 

the execution of each ordering and automatically compare and 

highlight differences between the final states to reveal message 

races.  

Since the flow graph description provide the debugger with a full 

knowledge about the causality between the executed operations, it 

would also be possible to undo a specific operation and determine 

which causally dependent operations must also be undone to 

maintain a consistent state, thereby providing a finer grain of 

control while stepping back to previous execution states. 

7. CONCLUSION 
We have presented a debugger for flow graph based parallel ap-

plications. By dynamically drawing the application flow graph as 

it unfolds, it enables the programmer to easily see the state of the 

execution as well as the status of every thread and operation. Gen-

eral features like operation and message breakpoints, operation 

inspection using a sequential debugger and message queue in-

spection provide the developer with much insight. The message 

tracing functionality allows focusing on messages and computa-

tions on a given branch of the flow graph while ignoring compu-

tations occurring in the rest of the application. 

The ability to influence the application through the reordering or 

modification of messages provides the developer with full control 

over the execution of the application. This control can be used to 

execute cases that occur only rarely in practice and compare exe-

cution outcomes, for example for testing the presence of message 

races within the parallel application. 

The Dynamic Parallel Schedules framework and its debugger are 

freely available at http://dps.epfl.ch. 
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