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Summary

A wide range of human activities relies on 2D and 3D image processing, synthesis and dis-
play. Medicineisfor instance one of the fields where imaging has gained particular importance
in the recent past because of the strong demand for non-invasive exploration techniques prima-
rily based on tomographic imaging.

With the advent of computers and digital technologies, the vast mgjority of the images manip-
ulated today in medicine as well asin other disciplinesis composed of discrete samples, called
pixels (or voxels in the case of volumic images). In order to exploit these images on computers
efficiently, several challenges must be met:

« traditional euclidean geometry, based on continuous concepts, appears not to be well-
suited to computers and images which are intrisically discrete. Geometric operations
based on floating-point arithmetic often lead to inconsistent results and algorithmic
instability

* the increasing size of the images, especially three-dimensional, creates an 1/0
bandwidth problem: images that do not entirely fit in memory must be read from
comparatively slow mass storage devices

In this context, a solid theoretical basis is needed to solve the problems introduced by the inad-
equacy of traditional euclidean geometry with respect to digital images. Discrete geometry is a
young and active branch of mathematics that aims at building such a theoretical foundation for
a consistent description of digital objects and operations. By nature, the results it establishes are
particularly well-suited to computer processing and lead to simple and efficient integer-based
algorithms that can be parallelized including at the I/O level, thus bringing increased perfor-
mance and a solution to the I/O bottleneck problem.

In the first half of this work, we propose new theoretical results and definitions for objects like
three-dimensional digital lines, digital spline curves and surface patches as well as algorithms
for rigorously solving problems like the intersection of 3D digital lines and planes or the deter-
mination of the covering of digital lines and parallelograms by rectangular plane tesselations.

In the second half, we emphasize the strengths of this approach by introducing two concrete
applications of these results in the field of medical imaging, namely the extraction of planes of
arbitrary orientation and of ruled surfaces from very large 3D discrete volumes (several
Gigabytes). These algorithms derived from discrete geometry are implemented on parallel
architectures consisting of commodity components (standard PCs with multiple SCSI disks
connected through Fast Ethernet). They achieve remarkable performance and scalability. Thus,



on a configuration consisting of a master and five dave nodes (Dual PentiumPro at 200MHz

with 12 disks each), the plane extraction algorithm is able to extract close to 5 dlices per second
(512x512 pixels, 24 bits color). On a more modest configuration consisting of a Dual-
Pentium Il at 300MHz with 16 disks, the same algorithm has aso proven its stability and per-
formance by serving Internet users and performing approximately 160’000 plane extraction
requests from the Visible Human body (13GB) in 6 months (see
htt p://vi si bl ehuman. epfl.ch/).



Résumeé

Un grand nombre d'activités humaines reposent aujourd’hui sur le traitement, la synthése et
I'affichage d'images. La médecine est ainsi un des domaines ou l'imagerie a gagné une impor-
tance particuliere ces dernieres années a cause de la forte demande en techniques non invasives
de diagnostic et de traitement, reposant essentiellement sur I'imagerie tomographique.

Avec l'avenement de l'informatique et des technologies numériques, I'immense majorité des
images ainsi manipulées aujourd’hui en médecine comme dans d'autres domaines est composée
de points discrets appelpses (ou voxels dans le cas d'images volumiques). L'exploitation
informatique de telles images doit, pour étre efficace, faire face a plusieurs défis:

* la géométrie euclidienne classique, basée sur des concepts continus, se révéle peu
adaptée a des images et des traitements par ordinateur qui sont intrinséquement
discrets. Les opérations géometriques basées sur l'arithmétique en nombre flottants
apparaissent ainsi plus délicates et conduisent souvent a des résultats incohérents ou
des instabilités algorithmiques.

* l'accroissement de la taille des images a traiter, en particulier 3D, pose un probleme
d’entrées/sorties lorsque les images deviennent trop grandes pour étre entierement
contenues en mémoire et doivent étre lues depuis des périphériques de stockage
comparativement plus lents.

Dans ce contexte, une base théorique solide permettant de résoudre les problemes liés a l'ina-
daptation de la géométrie euclidienne classique aux images numériques devient nécessaire. La
géométrie discréete est une branche émergente et trés active des mathématiques dont le but est
de construire une telle fondation pour la description des objets et opérations discrets. Par nature
les résultats qui en dérivent sont particulierement adaptés a une implémentation informatique et
conduisent a des algorithmes en nombres entiers qui peuvent étre plus facilement parallélisés y
compris au niveau de I'accés aux données, apportant ainsi une solution au probleme de conges-
tion des entrées/sorties.

Dans la premiere moitié de cet ouvrage, nous proposons donc un certain nombre de nouveaux
résultats et définitions théoriques concernant des objets comme les droites discrétes 3D, les
courbes et surfaces splines discretes ainsi que des algorithmes permettant de résoudre de fagon
rigoureuse des problémes tels que l'intersection de droites 3D et de plans discrets ou encore la
détermination de la couverture de droites et parallélogrammes discrets par des pavages rectan-
gulaires du plan.



Dans la seconde moiti€, nous mettons en évidence le potentiel de cette approche a travers deux
applications concrétes des résultats précédents dans le domaine de I'imagerie médicale, a savoir
I'extraction de plans de coupe d'orientation quelconque et de surfaces réglées de l'intérieur de
volumes discrets de trés grandes dimensions (plusieurs Gigaoctets). Ces algorithmes dérivés de
la géométrie discréte et implémentés sur des architectures paralléles a base de composants grand
public (PCs munis de grappes de disques SCSI et connectés par Fast Ethernet) atteignent des
performances remarquables et tirent au mieux partie de la puissance du matériel disponible
allant du simple PC isolé a la configuration haut de gamme constituée d'un réseau local de
machines. Ainsi, sur une configuration composée d’un maitre et de cing esclaves (bi-Pentium
Pro a 200MHz avec douze disques chacun), I'algorithme d’extraction de plan est capable
d’extraire prés de cing images par seconde (512x512 pixels, 24 bits couleur). Sur une configu-
ration plus modeste composée d’'un unique bi-Pentium Il a 300 Mhz avec 16 disques, le méme
algorithme a prouvé sa grande stabilité et sa performance en servant, en six mois, aux Internau-
tes de par le monde, plus 160 000 requétes d’extraction de plan de l'intérieur du Visible Human
(13Go) (voir le serveur L corps humain sous tous ses angles’
htt p://visibl ehuman. epfl.ch/)



Preface

Down to itstheoretical roots in Boolean algebra and set theory, computer science is probably
the discipline that has accepted the fewer compromises with the continuum. In a surrounding
universe which constantly hesitates between the discrete steps of quantum physics and the con-
tinuous moves of Newton’s and Einstein’s mechanics, computers and their silicon chip cores
beating with their invariable Os and 1s have founded the apparently immovable reign of digital
information and computation. And all the physical phenomena that not so long ago were granted
as continuous have now become discrete, victims of sampling and quantization. Examples are
innumerable: digital compact discs have eradicated the analog signals recorded on vinyls, dig-
ital cameras will probably seal the same fate on traditional photography, radio and television
signals will soon follow. From the most elementary to the most complex, every quantity that at
some point goes through a computer has little choice but to be sampled and quantized.

At the dawn of this digital revolution, new disciplines like information theory were born while
other topics in mathematics and signal theory that would have otherwise been neglected, have
gained new importance. Among these, digital geometry has raised particular interest among
mathematicians and scientists working in computer graphics in the last two decades. This is not
surprising since image visualization and processing are nowadays omnipresent in almost all
human activities. From entertainment (computer games, movie pictures) to scientific disciplines
(medical imaging, satellite imaging, astronomy) and industrial activities (computer aided
design, quality control), saying that digital images are everywhere has become a commonplace.
This overwhelming presence of the image drives strong demands for algorithms both for image
synthesis and analysis. These two main algorithmic classes have a common denominator:
geometry. Images are indeed often synthesized by means of geometric primitives such as
straight line segments, curved lines, surfaces and geometric operations such as scalings, rota-
tions, shearings, etc... On the other hand, image analysis often requires identifying those same
primitive geometric objects in order to extract valuable information.

Every pupil is taught about euclidean geometry right from his/her early years at school and
knows about lines, triangles, circles and their geometric properties: intersections, symmetries,
etc... Later on, students learn about algebraization of these geometric notions and know how to
represent these objects and their properties by means of equations and numbers. So quite natu-
rally, people tend to have high hopes of getting good results when applying these familiar and
so carefully learned notions to computer images. Unfortunately this approach is often disap-
pointing and the challenges posed by discrete geometrical structures soon appear to be
considerable.



The ssimplest questions of euclidean geometry become apparently inextricable when consid-
ered in a discrete space: the very definition of a straight line as the shortest path between two
points does not hold anymore, digital straight lines may have more than one intersection point
(even worse: the set of points making up this intersection may be disconnected), in a discrete
space, asimple operation like arotation is anything but easy to define since ensuring properties
like shape preservation isreally arduous. For many, these difficultiesarise from thefact that dis-
crete geometry is considered as an approximation or degenerate case of the more familiar
euclidean geometry. Recent experience has shown on the contrary, that thereismost to gain in
building a fresh new theory aimed at studying the intrisic properties of digital structures inde-
pendently of euclidean geometry approximations.

Discrete geometry is this branch of mathematics that has developed and grown out of the dif-
ficulties and frustrations engendered by the manipulation of continuous concepts on discrete
computing machines. Initially driven by practical considerations exclusively, discrete geometry
has now become a fully-fledged mathematical theory of its own but it still finds its ultimate
beauty in concrete applications. And even though it can find lots of other application fields, it
is naturally particularly well-suited to computer imaging problems.

Discrete geometry is adiscipline in its infancy when compared to the twenty-three centuries
of euclidean geometry. It is a vast open research field where the questions are many and the
answers only a few. Research proceeds in awide variety of areas and the synthesis effort that
characterizes mature sciences will probably come in a few years only. Therefore the first half
of thiswork does not attempt at presenting a consistent set of results focused towards a specific
objective but rather a collection of selected topics: intersection of 2D digital lines, definition and
properties of 3D digital lines, digitization of Bézier curves and surfaces and finally the covering
of discrete structures (digital lines and parallelograms) by rectangular tessellations of the plane.

As we underlined before, developments in discrete geometry are often driven by practical
computing needs and this discipline finds its ultimate full expression in concrete applications.
Therefore, in the second half of this work, we show how discrete geometry and especially some
of the results presented in the first half were used to produce two high-performance medical
imaging applicationsDigiPlan is a library for the extraction of planes of arbitrary orientation
out of 3D discrete volumes amigiSurf is a library that generalizes the former and allows to
extract ruled surfaces out of 3D discrete volumes.

Though strictly speaking, these algorithms are perfectly suitable for other disciplines (e.g.,
physics or geology), medicine which is a very demanding domain for computer imaging tech-
niques is deemed a particularly good application field for discrete geometry and has historically
driven its early developments. Indeed images produced by medical scanning devices (Com-
puted Tomography, Magnetic Resonance Imaging) are of course discrete and are constantly
increasing in resolution and hence in size. This induces new constraints and performance
requirements both in terms of processing power and 1/0 bandwidth. Furthermore, current trends
aim at spreading the usage of digital media like CD-ROMs or the Internet as a means of
exchange of images between physicians which will require high portability and scalability of
visualization applications even on low-end computer systems.
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Thanksto the underlying theoretical resultsin discrete geometry, the proposed algorithms use
integers only wherever possible and do not need dedicated hardware. Their ssimplified and
robust algorithmics as well as their integration in the state-of-the-art parallelization software
framework CAP/PS? made it possible to design parallel implementations that take maximum
advantage of the underlying commodity hardware and scale particularly well from the low-end
single PC computer up to a network cluster consisting of several PC’s with several disks

attached.
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Discrete Geometry






1 | ntroduction

In recent years, with the spread of the usage of images generated or processed by computers,
a new mathematical theory called discrete geometry has emerged beside traditional euclidean
geometry. This theory aims at studying objects called discrete objects consisting of countable
sets of points, whereas euclidean continuous objects generally consist of non-denumerabl e sets
of points. Besides their names, discrete objects have little in common with euclidean geometric
objects. Indeed, most elementary results of euclidean geometry do not hold in discrete spaces:
fundamental notions like continuity are shaken (what does “continuous” mean in a discrete
space ?), even the very definitions of objects become complex (how can a straight line segment
be defined in a discrete space ?). Discrete geometry tries to address these problems by devising
new results specific to discrete spaces and objects, and transposing the familiar notions of
euclidean geometry to this context.

Discrete geometry is more of a set of theories rather than a single theory. If the goals are clear,
the ways to get there are many, and the name “discrete geometry” gathers different research
directions together: discrete topology, arithmetic geometry, graph theory, theory of cellular
automata. Among these tracks, the first two currently seem the most promising and benefit from
the work of most researchers in the field.

Discrete topology considers discrete geometrical objects under the topological angle either by
means of connectivity relations (see Section 2.1.1 for a definition) or as combinatorial
structures [24][53]. On the other haardthmetic geometry tries to link the properties of discrete
geometric objects to those of integer numbers. Thus it tries to inherit from one of the oldest the-
ories in mathematics, also one of the most puzzling that apparently manipulates the simplest and
the most fundamental concepts, integer numbers, and yet hides perhaps the most arduous prob-
lems. Recently, fascinating results about digital lines and planes, quasi-affine transformations,
discrete rotations and linearization of geometric objects have generated a growing interest for
arithmetic geometry. The approach still promises a wealth of new results and elegant solutions
and is seen by some specialists as the future of discrete geometry [24]. Moreover, unlike dis-
crete topology which may be sometimes seen as more abstract and whose connection to
concrete applications is not always obvious, arithmetic geometry, closely tied to arithmetic cal-
culus, is often more algorithmic and more directly linked to computer implementation.

All these aspects make discrete geometry, and more specifically arithmetic geometry, a mate-
rial of choice for new studies and algorithms for image visualization and manipulation.
Therefore, we present in the following sections making up the first half of this work a contribu-
tion to the field as a collection of results whose common denominator is their intended
application to the medical visualization applications presented in the second half of this work.
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I ntroduction

First, fundamental notions and selected existing results of discrete geometry are introduced
with particular focus on arithmetic digital lines and planes. Then, we tackle the problem of 3D
digital lines for which we propose an original approach and derive interesting new results such
as the existence of combinatorially distinct 3D digital lines having the same direction. Unlike
2D digital lines that have received considerable attention and for which numerous results have
been established, 3D digital lines remain a mostly unexplored area. We present a new method

for digitizing Bézier curves and surface patches that is compatible with existing results of digital
geometry. Earlier methods generally rely on the choice of an arbitrary constant whose value
with respect to the sampling grid is not clear, our approach avoids this problem and approxi-
mates Bézier curves and surface patches by digital straight line segments and digital plane
pieces in a close to optimal manner. The first half of this work is then concluded with a study

of two problems related to what we caliti-scale discrete geometry: rectangular sub-lattices

of Z2 induce a tessellation of the plane that can be seen as another scale of discreteness beyond
the fundamental tessellation generatedzsy itself. The relations between those two levels of
discreteness have a theoretical and also practical interest for some applications. In this context
we propose a solution to two particular problems: determining the covering of digital lines and

of digital parallelograms by regular rectangular tessellations of the plane.
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2 2D Digital Linesand Planes

This chapter introduces the basic notions of discrete geometry that make up the foundations of the
subsequent chapters. The definitions of digital straight lines and planes as well astheir basic prop-
erties are presented. Closing the chapter are two original results about the intersection of digital
lines and the relation between the arithmetic offset and the induced shift in their combinatorial
structure.

2.1. Notations and definitions

In this section we recall some very basic results of number theory and introduce the notations
that will be used throughout this work. Proofs for results mentioned here can be found in aref-
erence book on the theory of numbers such as[29].

a,b being two integers, we denote with [g} the quotient of the euclidean division of aby b

while %E denotes the remainder of this division, otherwise called residue of a to modulus b.
0

The fundamental relation between these two values writes:
Cal
a = b[§}+ i (2-1)
b) " b
We denote with gcd(a, b) the greatest common divider of a and b. a and b are said to be
relatively primeif gcd(a, b) = 1.

Theorem 2-1. Let (a, b) 0 Z2 andlet g = gecd(a, b) then there exist two integersu and v
such that:

au+bv =g (2-2)

Proof. The demonstration of this fundamental theorem can be found in any treatise on the
theory of numbers such as[29]
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2 2D Digital Linesand Planes
Notations and definitions

Often demonstrations will be made with restrictions on the directions of discrete objects for
the sake of clarity. Unless otherwise noted, 3D discrete objectshave adirection given by aninte-

ger vector (a, b, c) verifying the following hypotheses:

Egcd(a, b,c) = 1
] O0<a<b<c

(2-3)

The first one, motivated by arithmetical reasons, isnot areal restriction: the general case can
be quite easily reduced to it. The second oneismoreinteresting as it stems from the symmetries

of the Z3 space (or those of the cube). These inequalities describe what is called the standard
simplex (Figure 2-1), which is the fundamental domain of the group of symmetries of the cube.

/x

1

Yy 1
Figure 2-1: The standard smplex

Using this group, the study of 3D digital lines or planes directed by any vector (a, b, ¢), can be
reduced to those directed by vectors belonging to thisfundamental domain. Resultsfor the other
directions can be easily derived using the symmetries of the cube (combinations of reflections
and coordinates swaps).

We also recall here some basic notions of 2D and 3D discrete topologies [35]. Let Z be the
set of relative integers. A point P of Z2 is defined by its coordinates (x, y) 00 Z2, a point of
73 isdefined by its coordinates (x, y, z) 0 Z3. We call 2D (resp. 3D) image array, atessella-
tion of R2 (resp. R3) into regular tileswhich we call pixels (resp. voxels). There are two usual
conventions to define this tessell ation:

» centered pixels (resp. voxels): the pixel (resp. voxel) of coordindtey) (resp.
(x, ¥, 2)) corresponds to the interval B2 (re®® ),
[x—0.5x+0.5) x[y—0.5y+0.5) (resp.
[x—0.5x+0.5) x[y—-0.5y+0.5) x[z-0.52z+0.5))

* edged pixels (resp. voxels): the pixel (resp. voxel) of coordingtes) (respy, 2) )
corresponds to the interval B2 (redp3 [R,x+1) x[y,y+1) (resp.
[X,x+1) x[y,y+1) x[z,z+1))
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2D Digital Linesand Planes
Notations and definitions

These conventions are rigorously equivalent. They induce however some modifications in
algebraic equations of discrete objects defined relatively to continuous objects. For instance, the
equation of the digital linethat covers an euclidean lineis not the same if centered or edged pix-
els are considered (Figure 2-2). For consistence, we always use the “edged pixels” convention.

Centered pixels I

Edged pixels it

Figure 2-2: Centered vs. edged pixels

The same digital line D(3, -5, —4, 8) isdrawn using centered and edged pixels. In the
first case it covers the euclidean line 3x—5y = 0, in the second it does not.

These tessellations establish a one-to-one correspondence between the integeZ?lattice
(resp.Z3 ) and the elements of a 2D (resp. 3D) image array. We will use these two points of
view indifferently and speak either of points or pixels/voxels.

2.1.1. Discrete adjacency and connectedness

Two distinct pointsP, (X, y;) an®,(x,,y,) o2 are said to be

« 8-adjacent if their coordinates differ by at most thax(|x, —x;
corresponding pixels share one common vertex.

Y2-ya) <1 e the

* 4-adjacent if one at most of their coordinates differs by, —x| +|y, -y, <1, i.e.
the corresponding pixels share one common edge.

It is clear that two points that are 4-adjacent are also 8-adjacent. We say that two points are
strictly 8-adjacent when they are 8-adjacent but not 4-adjacent.
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Similarly, two distinct points P, (xy, Y4, z;) and P5(x,, Y, Z,) of Z3 are said to be

 26-adjacent if their coordinates differ by at most 1,
max(|X, —Xy|, [Y2=VY1|: |Z2—2|) €1, i.e. the corresponding voxels share one common

vertex.

* 18-adjacent if two at most of their coordinates differ by 1, i.e. the corresponding voxels
share one common edge.

* 6-adjacent if one at most of their coordinates differs by 1,
[Xo =Xq| + |Y2—VY4| +|22—24| £ 1, i.e. the corresponding voxels share one common
face.

6-adjacency 18-adjacency 26-adjacency

Figure 2-3: Discrete adjacenciesin 3D

It is also clear in this case that if two points are 6-adjacent then they are also 18-adjacent and
26-adjacent. We say two points atectly 26-adjacent if they are 26-adjacent but not 18-adja-
cent. We say they astrictly 18-adjacent if they are 18-adjacent but not 6-adjacent.

Forn = (4, 6) respectively6, 18 26 , the-neighbors of a pointP are th@ points that
aren -adjacentt® . The setmf neighbors to a point definasrigsghborhood.

A n-path is an ordered set of points such that consecutive pains are -adjacenSA set of
points is said to ba-connected if there exists am -path i between every pair of points of
S. In Z2, a 4-connected set is also 8-connected. We say assettly 8-connected if there
exists a pair of points in that set that can be linked by an 8-path but not by a 4-path contained in
the set. Similarly inZ3 , a 6-connected set is also 18-connected and 26-connected. We say that
a set isstrictly 18-connected (resp.strictly 26-connected) when there exists a pair of points in
the set that can be linked by an 18-path (resp. 26-path) but not by a 6-path (resp. an 18-path)
entirely contained in the set.

2.1.2. Discretetunnels
Let S be a subset of a set of poits XH# S ismot -connectedShen s saidisepe
arating in X [11]. If S is n -separating but noh -separating fior n tien is said to have

m-tunnels (Figure 2-4). IfS is 26-separating then it is said to be tunnel-free. Discrete tunnels
in curves and surfaces are often a problem since they tend to defeat the Jordan theorem.
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Figure 2-4: A 18-tunnel through a piece of a 6-separating surface

2.1.3. The Jordan theorem for discrete curves

InR?2, the Jordan theoremisafundamental theorem which statesthat any simple closed curve
divides R2 into two disjoint connected components, onefiniteis called theinterior of the curve,
the other, infinite, is called the exterior of the curve (Figure 2-5).

Simple closed
curve

-

Exterior

Figure 2-5: The Jordan theorem in R2

A discrete n-simple closed curve is defined as a connected set S of points each of whichis
n -adjacent to exactly two other pointsin the set. In Z2, the Jordan theorem still holds provided
two different types of connectivity are considered for the curve and the background, otherwise
contradictions appear [35]. One can see for instance in the first figure of Figure 2-6 that if 8-

8-connected boundary 4-connected boundary
4-connected interior 8-connected interior

Figure 2-6: The Jordan theorem in Z2

connectivity wasto be considered for both the curve and the background then the white and gray
voxel setswhich are the expected exterior and interior of the curve would be connected, which
is in contradiction with the theorem. Now if 8-connectivity is considered for the black points
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defining the curve and 4-connectivity for the other points, then the sets defined by gray and
white pixels are digoint and thus one can speak of interior and exterior of the curve in the sense
of the Jordan theorem.

Unfortunately this result is very hard to extend to Z3 and today researchers till spend alot
of energy in finding a satisfactory general framework for discrete surfaces in which the Jordan
theorem holds. Some demonstrations have been made though by Herman [30], Malgouyres [42]
and others (referencesin [20]). Unfortunately those demonstrations rely more or less on ad hoc
definitions of surfaces which clearly shows that the real problem resides in the very definition
of adiscrete surface. Indeed, it has been shown that unlike continuous simple closed surfaces,
thin discrete simple closed surfaces verifying the Jordan theorem cannot be characterized
locally [5], therefore a variety of approaches for defining surfaces have been made, some of
which are compatible with the Jordan theorem: a voxel approach, where a surface is defined as
a set of faces (surfels) between adjacent pairs of voxels[30], a combinatorial approach, where
asurface is defined as a combinatorial manifold [20], a graph-theoretical approach where a sur-
faceisdefined asathin set of pointslinked by adjacency relations and additional properties[5],
[42].

2.2. Digital straight lines (previous art)

2.2.1. Introduction and definition

Straight lines are the most fundamental objectsin computer graphicsjust asthey arein euclid-
ean geometry. It is no surprise then that many researchers focused some interest on their study.
Digital lines are indeed a fascinating subject as, despite their apparent simplicity, they carry
much of the still somewhat mysterious relations between the discrete and continuous.

The common way of thinking geometry is so deeply pervaded by continuous concepts that the
most intuitive approach to digital straight linesis naturally, to consider them as approximations
of euclidean lines. This first approach is fundamental and was widely investigated [2], [36],
[48]. It lead for instance, to the first drawing algorithms of lines on acomputer display [6]. Thus
the very first definitions of digital straight line segments were actually agorithmic rather than
properly geometric. Rosenfeld first formulated the fundamental chord property which charac-
terizes digital straight line segments[48] and deduced their first important intrinsic properties.
Most of this early work however remained strongly rooted in euclidean geometry.

Relying on continuous geometry to study digital lines is certainly reassuring and leads to
many interesting results but it also uncovers many problems (e.g., the intersection of lines) and
actually somewhat neglects the fundamental nature of digital lines. An aternative approach is
to consider digital lines for what they are, i.e., discrete sets of discrete points, define them as
such and deduce properties from this definition. Among the works in that direction, the arith-
metic definition proposed by Reveilles [46] is certainly the most fruitful and promising. It
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achieves amgjor step in the synthesis of existing definitions into a remarkably simple and rich
formulation.

Definition 2-1. We call planar digital straight line asubset of Z2 described by a diophantine
equation of the following form :

D(a,b,y,p) = {(xy) DZ°/y<ax+by<y+p} (2-4)

where all parameters areintegers. (a, b) definesthe direction of theline, y definesits
affine offset while p is called arithmetical thickness.

YA

Figure 2-7: Thedigital line D(3, -5, -4, 5)

A digital line can be seen as either a set of pixels or equivalently as a set of integer

points comprised between two real euclidean lines. The samelineis shown here using
both representations.

When consideredin R 2 instead of Z2, Equation 2-4 defines a continuous strip of width (mea-

sured orthogonally to the direction of the strip) w = zp = which can be thought of asthe
ac+b
continuous counterpart of the naivedigital line. Thisoffersanother point of view on digital lines

where those are seen as sets of integer points contained in a continuous strip as illustrated in
Figure 2-7.
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2.2.2. Naivedigital lines
A particularly interesting subset of digital lines consists of those verifying p = max(|al, |b|):

D(ab,y) = {(x y) 0Z°/y<ax+by<y+max(|al, b])} (2-5)

which are called naive digital lines and have exactly the same structure as the sets drawn by the
classical Bresenham algorithm for lines [6]. The most important property of naive linesis strict
8-connectivity.

Naive digital lines are also “functional” along one of the main axes. For instance let us sup-
pose that0<a<b , then for any value »f there is one single valye of  suc{xilyat

belongs to the naive digital liné(a, b,y) ,i.g., can be written as a functian of , hence the
term “functional”. More precisely, in that case:
_ _[ax= i
v=1%" (2:0)

This fact can be further understood by noticing that in the case of naive digital lines such that

0<a<b, the height of the continuous strip definedri by Equation 2-5 is exactly 1, which
guarantees that above any integer abscissa there is one and one only integer point contained in
that continuous strip.

Naturally the previous result still holds by symmetraié b . In that case the naive digital
line is functional alony , meaning tivat can be written as a functign of

AY o+
Digitization by truncation >
0<3x—5y<5 / X
P
AY o

Digitization by closest integer / -
2<3x-5y<3 / X

e

Figure 2-8: Digitization by truncation vs. digitization by closest integer
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D(a, b,y) is the digitization by truncation of the ordinary euclidean line of equation
ax+ by = y wherex, y, zare real numbersand a, b and y are integers, while its digitization by

[ b0
the closest integer point is given by D %ﬁ b, y— [E@(%MJE (Figure 2-8).

2.3. Digital planes (previous art)

2.3.1. Introduction and definition

One of the particularly interesting aspects of Definition 2-1 isthat it extends particularly well
to describe digital planes[16]. Therefore digital planes share properties similar to those of dig-
ital lines.

Definition 2-2. We call digital plane a subset of 7° described by a diophantine equation of
the following form :

P(a,b,cy,p) = {(xy,2) 0Z°/y<ax+by+cz<y+p} (2-7)

(a,b,c) 7° definesthe normal direction of the plane, y 0 Z definesitsaffine offset
while p 0 Z iscalled arithmetical thickness.

Figure 2-9: A naivedigital plane
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2.3.2. Naivedigital planes

Asfor digital lines, aparticularly interesting subset of digital planes consists of those verifying
p = max(|al, |bl, [cl):

P(a,b,cy) = {(xY,2) 0Z%y<ax+by+cz<y+max(a, |bl, c|)} (2-8)

which are called naive digital planes. Those planes are 18-connected and have no holes for
6-connectivity. One of the most fundamental properties of digital planes is that they are

“functional” along the main direction of their normal, i.e(df= max(|al, |b, |c|)) >0 then for

each(x,y) there exists a single such {bay, 2) belongs to the digital plane. Bhatis, can
be expressed as a function(afy) , which writes:
zZ = _[%\q (2-9)

P(a, b, c, 1) is the digitization by truncation of the ordinary euclidean plane of equation
ax+ by +cz = y wherex, y, zare real numbers argb andu are integer®(a, b, c, 1) also

represents the digitization by the closest integer point of the plarely +yz = & where
a=ac,B=Db/c,y=1,0=d/c andu = d—[g} .

2.4. Basic properties of digital linesand planes (previous art)

Various properties of digital lines can be deduced from Definition 2-1 [46], to summarize a
few:

» The structure of a digital line of directioalf) with 0<a<b andgcd(a,b) = 1 is

described by the modular sequer%.%e'% . The structure of a digital line is

O Q)si <b
thereforeb -periodic and this modular sequence describes the length of the plateaux of
the line and their sequence.

» Two digital lines having the same direction and the same arithmetical thickness are
equivalent, i.e., are identical within translation

» Two digital lines having the same bounds are homologous, i.e., one can be transformed
into the other by a unimodular matrix (which represents a sequence of shearing
operations)

» The thickness parametpr controls the connectivity of the line :
+ p <max(|al, |bl): the line is disconnected
+p = max(|al, |b|): the line is strictly 8-connected
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+p = |a +|b|: thelineisstrictly 4-connected
*p>lal +|bl: thelineisthick

AY
- . f
Disconnected ..
|| X
0<3x-5y<3 - >
.. |
.. |
AY
Naive
8-connected X
>
0<3x-5y<5
A y
4-connected
X
0<3x-5y<8 |
Thick
X
0<3x-by< 17 -

Figure 2-10: Connectivity vs. arithmetical thickness of digital lines
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These properties also apply to digital planes. In particular, in the case of adigital plane:

» The thickness parametgrcontrols the connectivity of the plane :
* p<max(|al, |bl, |c]): the plane has 6-holes
+p = max(|al, |bl, |c|): the plane is strictly 18-connected and has no 6-holes
*p = |a +|b| +|c|: the plane is 6-connected
* p>|al +|b| +|c|: the plane is thick

2.5. New results about digital lines

The following sections present original results about problems related to 2D digital lines. The
first one deals with the intersection of 2D digital lines, generalizing a result previously estab-
lished by Reveilles [46]. Such a generalization is necessary for practical implementations which
generally need to avoid restrictions on the directions of the lines. The algorithm that computes
the intersection of digital lines is fundamental, for instance, it constitutes the basis of a digital
parallelogram drawing algorithm.

The second result introduced in this section links the affine offset parayneter of the equation
of a digital line to a shift of index in the canonical combinatorial pattern of the line. Indeed it
has been shown that the combinatorial structure of a naive line, i.e., its sequence of steps and
plateaux, depends only on its direction [46]. However varying the affine offset induces a shift
in the canonical pattern. The relation between these two values can be used for instance to
devise an optimized naive digital line drawing algorithm.

2.5.1. Intersection of 2D digital lineswith non prime direction coefficients

Most of the time a requirement is made on the direction of digital lines that the coefficients be
mutually prime. Indeed this is not much of a restriction from a theoretical point of view and
greatly simplifies the calculations but it also happens to be somewhat inconvenient in practice
when one tries to implement algorithms. The intersection of 2D digital lines has been studied
by Reveilles [46] with such restrictions, here we extend the results to digital lines of arbitrary
rational direction. The intersection of discrete lines can be very complex and in particular it may
not be connected.

Let Dy(a b,y,p) andD,(c,d, u,v) be two digital lines. We assume that the lines are not
parallel:ad —bc # O . In order to find their intersection we need to solve the following equation
system:

Oy<ax+by<y+p

2-10
Epscx+dy<u+v ( )
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Let g = gcd(a,b), a = ga and b = gb'. Then Equation 2-10 can be rewritten as (using

matrix notation):

Y| @poxo |LIP

9|<Q o<| 9 (2-12)
u| ©d

Sincea’ and b’ are mutually prime, thereexist u and v suchthat a'u+b'v = 1.

_ [ —b'0 . (X0 1 xO .
Weintroduce U = [J _, 0 andthechange of coordinates %YD = U %D. Equation 2-11
oV apg O O

becomes

= Q<
IN
oo

1 0 0 |22
<| 9 2-12
u+dv a’d—b’c%% w+v ( )

LetA = cu+dvandd = a’'d—Db’c. Thesolution for the intersection can be computed with
adoubleloop in X and Y such that

-y | =¥Y=P -
{g}sx<{ 5 } (2-13)

The expression for the boundaries of Y depends on the sign of &:

*5>0

_[M} <Y< _[M} (2-14)
5 5

«0<0
{H + V5_)\X} +1<Y< {—“ _BAX} +1 (2-15)

Example. Let us apply these results to find the intersectionDg{4, —10, 5, 15
D,(6,-18 4, 18):

and

g = gcd(4,10) = 2 (2-16)
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Hence 3<X<10, furthermore & = —6 and therefore, the value of Y is given by
Equation 2-15:

{GXg 22} +1<Y< {GXG— 4} +1 (2-17)

(-2 50
Finally, applying the unimodular matrix U = [ 1 ZD on (X, Y) yieldsthefinal result shown
o=+ <

in Figure 2-11 and Figure 2-12.

X |3 4 5 6 7 8 9

Yy|loj1/2 1|2 3|2 |3 |4|3|4|5|4|5|6|5|6 |7 |6 |7 |8
X |-6-1|/4 |-3|2 |7 |0 |5 |10/3 |8 |13|6 [11/16|9 |14|19 12|17 |22
y |[-3|-1}1 |-2(/0 |2 |-1|1 |3 [0 |2 |4 |1 |3 |5 |2 |4 |6 |3 |5 |7

Figure 2-11: Intersection of D,(4,-10, 5, 15 and D,(6,-18, 4, 18

10 20 30

Figure 2-12: Intersection of D,(4,-10, 5, 15 and D,(6, 18, 4, 18)

2.5.2. Index shift in the canonical pattern of a 2D discreteline

As previously mentioned (Section 2.4) a 2D digital line of equation y< ax—by<y+ p such
that 0<a<b and gcd(a, b) = 1 is b-periodic, i.e. it can be built by repeating periodically a
pattern of b pixels (Figure 2-13). An optimized line drawing algorithm can take advantage of
that result by computing the canonical pattern once and then repeating it.

It is easy to show that the digital line pattern depends only on the direction coefficients
(a,—b) . Varying the affine offset y has no influence on the line pattern since digital lines that
have the same direction but different affine offsets are identical within integer translation (Fig-
ures 2-13 and 2-14). Thus the line pattern can be calculated independently of the affine offset.
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\

Figure 2-14: D(3,-8,—-3) isequal to D(3, -8, 0) within trandation

We define the canonical pattern of a direction (a, —b) as the sequence (x;, y;) for 0<i<b,
where

%
- [3]

U

To draw adigital liney<ax—by<y+p starting at x = 0, aline drawing algorithm using
the previous optimization needs to determine the shift in the canonical patterninduced by y# 0.
Figure 2-14 shows, for instance, that at x = 0 the index shift of D(3, -8, —3) in the canonical
pattern for direction (3, —8) is1.

Theorem 2-2. D(a, —b,y) can be drawn by shifting the canonical pattern for direction
(a,—b) s unitsforwardat x = 0 where

T
OOd

yu

s = 0 (2-19)

O
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Proof. The structure of the canonical pattern is controlled by the modular sequence Chi %
oP O
. . . i —yO . :
whilethe structure of D(a, —b, y) isdescribed by %a%g thus we are looking for the shift
U U
0 < s<b such that:
Cai —yQd _ Ca(i +s)C
O byD=D(b )D (2-20)
O o O O
Since gcd(a, b) = 1 thereexist (u, v) suchthat au + bv = 1. Hence we can write:
00 Oyl
=0 B
Cai —yO _ Cai —y(au+ bv)O _ Cai + a(—yu) O O
mal -y - A=Y Jp-@raywo_ g - - (2-21)
ob o o b o o b g 0O b O
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In this chapter, a new approach to the study and definition of 3D digital lines is proposed. This
approach based on the properties of the rational lattice generated from the projection of z3 onto
an euclidean plane of rational direction opens the door to interesting new results and properties of
digital lines.

3.1. Introduction

Research work about 3D digital lines has followed two different paths, much like 2D digital
lines. Thefirst one focused on algorithmics while the second one investigated more theoretical
results such as the geometrical and topological properties of 3D discrete lines.

Especialy because of the increasing popularity of ray tracing for the rendering of 3D scenes
and the devel opment of optimization techniques like space partitioning into voxels, the need for
3D line drawing algorithms has become urgent. The first attempts derived directly from euclid-
ean geometry with little or no attention paid to the discrete nature and properties of the objects
being built [2]. Then the classical 2D line drawing algorithms such as Bresenham’s were
extended to the 3D case by considering two projections of the line onto the main coordinates
planes [32]. This approach which brought a significant improvement over the previous algo-
rithms by using integer arithmetic, has proved to be particularly convenient and remains one of
the most commonly used even though more recent algorithms such as Cohen and Kaufman’s
Tripod Algorithm have introduced a new efficient way of drawing 6-connected 3D digital
lines [13].

Regarding the theoretical aspects, early research tried to extend the knowledge and theoretical
results on 2D digital lines to investigate the structure and properties of 3D digital lines. C.E.
Kim for instance showed that one could characterize a 3D digital line thanks to the chord prop-
erty applied to its projections onto the coordinate planes [33]. She also demonstrated that the
chord property does not hold for the digital line itself, thus showing that the mathematical study
of discrete geometric objects becomes much more intricate in 3D. However this definition of
3D digital lines using the 2D digital lines of closest integer points in two of the projections, has
several limitations:

* the discrete topology of this 3D digital line notion is not clear,

« its third projection is, generally, not the closest set of points of the third euclidean
projection,

« if we consider a family of parallel euclidean lines, we do not know how many
combinatorially distinct digital structures will be built by this process,
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» and above all the set of voxels defined in this way is not the set of closest points of the
given 3D euclidean line (see Figure 3-1).

Direction
(13,14,15)
Usual 3D Line Best Integer Approximation

Figure 3-1: Usual 3D linevs. best integer approximation

The graphics on the left shows a digital 3D line built in the usual way using the
Bresenham'’s algorithm for two of its projections. The graphics on the right shows the
discrete line built with the integer points that are closest to the corresponding euclidian
line. The red circles shows where a difference appears.

These questions are only the simplest ones. Many others could be asked such as: the depen-
dence on the choice of the projections, the intersections with digital planes, the intersections
between 3D digital lines, ... Thus a new approach is needed. Therefore we would like to provide
here a new definition of 3D digital lines relying on subgroupZ®f , whose main advantage
over the former one is its ability to convert any practical question into rigorous algebraic terms.
In particular, we obtain a complete description of the topology of these lines and a condition for
the third projection being a 2D digital line as well as a classification of digital lines of the same
direction into classes of equivalent combinatorial structure. The approach presented here offers
new perspectives and looks particularly promising, however its in-depth exploitation would
have fallen much beyond the scope of this particular work and the results we present here are to
be considered more as hints towards new directions for the study of digital lines rather than
complete results per se.

In the second part of this section we use the arithmetical definition of 3D digital lines derived
from this approach to study the intersection between a digital line or a set of adjacent digital
lines and a digital plane.

3.2. The projection lattice of the integersalong a rational direction

The general idea behind our approach consists in studying the properties of the rational lattice
generated on an euclidean plane by the orthogonal projectih of onto that plane. For the sake
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of clarity in the demonstrations, we present the definition with a restriction to directions given
by integer vectors (a, b, ¢) satisfying the hypotheses of Equation 2-3.

Let us consider the euclidean plane P, normal to (a, b, ¢) whose equation is
ax+by+cz=0 (3-1)
and the orthogonal projection 1t of Z3 onto P:
T 73 . P (3-2)
It is easy to prove that the image

L = 1(zZ3) (3-3)

is adiscrete and rational lattice.

ax+by+cz=0

Figure 3-2: Projection of Z3 onto a plane along arational direction
Brown dots are the projections of integer pointsof z3 and make up thelattice £ . Two

fibers of Z3 are shown.

An important consequence results from £ discreteness; bounded subsets of plane P contain

only afinite numbers of points of £. If B is such a bounded set, its inverse image m1(B) is
made of a finite number of fibers all of which are in one to one correspondence with the
subgroup

m1(0) = {kab,c) | kO Z} (3-4)

generated by vector (a, b, ¢) (see Figure 3-2). More precisely for any point x [0 £ we know
that its fiber Tr1(x) isequal, within trandation, to T1(0) .
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In this way we reduce the study of 3D digital lines to the study of the 2D lattice £ . Lattices

(or Z -modules) are structures which are, a the same time, similar and distinct from vector
spaces. The reader will find their propertiesin any algebratreatise [38].

We are more precisely interested in the study of the subset p of £ contained in afundamental

domain of asub-lattice S of L. We show hereafter that the parameterization of £ and p can
be made extremely simple thus leading to a particularly interesting representation of digital 3D
lines. We show also that we can, among others, read the topology of the line and recover usual
algorithms from this representation.

3.2.1. Smplification of triply generated two dimensional lattices

The main difficulty concerning Z -modules (or lattices or free abelian groups) is that one can
find free families of vectors whose cardinal is equal to the dimension of the ambient space and

which do not generate this space. One such exampleisgiven by the set { (1, 0), (3, 2)} of 72,
which isfree, has cardinal two and is not generator of Z2. We can see for instance that vector

(2, 1) cannot be represented as a linear combination, with integer coefficients, of the given
Vectors.

Let us introduce the following definitions:

«If V,,V,, ..., V, are integer vectors of3 L(Vy, V,, ..., V;) will denote the lattice

generated by these vectors. We shall restrictto2 i andB and say, respectively,
in these cases that the latticesdoably or triply generated.

» We shall denote any fundamental domain.¢¥ ;, V) Play (for parallelogram)
and byp the set of points &fV,, V,, V3)  containedPar , (keep in mind that the
pointsV,,V, anav; +V, araot members op .

» We also denote by(p) the cardinalyof

Our goal is parameterize in the most simple way the set . Let us start with a 2D version of
this problem, that is we suppose vectagrsV,, V, a&in

X1 X200
V; = (X3, y,) andV, = (X, Y,) either generate a rank one subgro@eﬁg, y =0 , or
1 Y2
a rank two subgroup aZ2 otherwise. We suppose this last hypothesis is satisfied in what

follows.
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If V5 = (Xg,Y3) isathird vector of Z2 we also suppose that:
* ged(x,y;) = 1fori = 1,2 3 and that

* All three determinantslet(V,, V,) det(V,,V;) andet(V; V,) are non zero and
that the first one is positive

With these hypotheses the lattic€V,, V,, V3) is a rank two submodue of and we are

interested, as explained above, in thepset of its points contained in a fundamental domain,
Par, of L(V,, V).

Obviously the parallelograniPar  and its translations by the vedpis/, +k, [V, ,
ki, k, 0 Z, induce atiling ofZ? (see Figure 3-3). So any integer poi#tof belonging to one

such tile has a reduction (homologous poinfpar . Thus, after reduction, the sekjibnice ,
k[0 Z gives a subset of the integer pointsRar ; this inclusion is genetsilty. In the
remaining the following two notations will be used for this reduction moéao . either

“mod Par “ or “mod {V 4, V,} “

Vi
Va <V

Figure 3-3: A doubly generated lattice and the multiples of a third vector

The integer vectors vV, and V, induce a tiling of z2. Multiples of V5, shown as
brown dots, can be reduced to the fundamental parallelogram (hatched area) and
therefore describe a subset of the pointsin that parallelogram.

The following lemma results immediately.

Lemma 3-1. The set p is given by the reduction modulo Par of the integer multiples of
vector V3, thatisof {k[WV3 | kD Z}:

p = {kDV4| kOZ} mod{V,, Vy} (3-5)
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It is well known that the surface of Par is given by x;y,—X,y;, this quantity
d = X;¥,—X,y; aso corresponds to the number of integer points contained in Par, i.e.
card(Par) . So the cardinal of p isbounded by &. Moreover there exists one integer value k
such that kV 5 belongs to the lattice generated by V,; and V,. This comes from the following
observation: as card(Par) isfinite, there must be two distinct integer values m and n such that
m [V 5 and n [V 5 havethe samereductionmod { V4, V,} . Thusfor k = m—n, k[V 5 iscon-
gruent to the null vector:

kV;=0mod{V,, V,} (3-6)
which is equivalent to this assertion

It can then be deduced that there exists a smallest non-null integer value, still denoted k, such
that kW5 belongs to the lattice generated by V, and V,, which can be written as
kV,=0mod{V,,V,}.

Lemma 3-2. The smallest non-null integer number k such that kV;=0mod{V,, V,} is
exactly the cardinal of p.

Proof. Let us consider the elements p,...p,_, of p, where p,=iVymod{V,,V,}. These
elements are distinct for if we suppose p,, = p, O<m<n<k then we would have
Prn_m=0mod{V,,V,} whichisin contradiction with our hypothesis stating that k is the
smallest non-null integer such that kV;=0mod {V 4, V,} . Therefore v(p) = k. Moreover
for any integer g > k we have

0 q[D

— q —
Vomod{V.,V,}= 2|+ mod{V.,,V,} = 3-7
qVsmod{V4 V,} D{k} ka/3 od{V,, V,} p[ﬁ (3-7)

O
[

Hence any qV 5 with g >k reduces to one of pj...p,_, within modulo {V 4, V,} which
allowsusto conclude: k = v(p) .1

We introduced above the determinant: & = X;Yy, —X,Yy; (which can be supposed to be strictly
positive). Let us also consider the values of the two other determinants reduced modulo &
X = (X1Y3—Xgy1) modd and y = (X3Y, — X,¥5) modd

With alittle knowledge from group theory about elements order, we can deduce that

Lemma 3-3. The cardinal of p, v(p) can be expressed as

O o 0 [
<= V) = 1Med(x, 8)' ged(y, 3)F 39

Page 46



Theoretical Aspectsof 3D Digital Lines
The projection lattice of the integers along a rational direction

Proof. An arbitrary euclidean vector (X, y) can be expressedinthebase{V,, V,} as

(X Xy,—X XY —X
58 = Yo zyvl N 1Y —XY1
O o) o)

Vs, (39

KV 5 is congruent to the null vector to modulus {V 4, V,} if it can be written as a linear
combination of V; and V, withinteger coefficients. Hence kV;=0mod { V4, V,} iff both
K(Xgyo —X K(X1Y3—X
(XgYo —X5Y3) and (X1Y3—X%3Y4)
o o
being multiplesof &:

are integers. This condition amountsto ky and ky both

0|k
oI (3-10)
[®[kX
Simplifying by gcd(y, 8) and gcd(X, d), this equation becomes
2
cd(y, 8)| gcd(y, 9)
Je (V. 9) (3-11)
DD B
cocd(x, 8)| 9cd(x, )
0 and Y being mutually prime as well as % and —X— we
ged(y, 9) ged(y, 0) ged(X, 9) ged(X, 0)
deduce that k must be a multiple of both 0 and 0 which proves the

ged(y, 9) ged(X, 9)
l[emmam

The set p can be constructed in v(p) steps, each one involving amod (V4, V,) reduction.

The components p, o of the mod {V 4, V,} reduction of an arbitrary vector (x,y) can be
expressed as:

0 O —xy ]340 —xy, |20
%bD= 00— | 22 %2Y |5t g- | 2 "%\ 5%g (3-12)
M0 O o Y10 Y20

Evenif thisformulaisfine, wewill look for ayet simpler and faster way of generating the set
p . In fact we have the following lemma, where 9, X, y are as above.
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Lemma 3-4. There is an integer 2x 2 matrix R which maps the lattice L(V4, V,, V3)
bijectively onto L((d, 0), (0, 8), (X, V)).

Proof. Using the classical identity for euclidean division

a= b[ } %D (3-13)

the preceding identity can be smplified as follows:

O Xy, — X,y X0 O,y —xy, 02X
0= 1[ﬂ Yo — X5y O+ 1y Y1 0

3-14
0 %@ o YO O Y2 (314)

But this can be written in matrix notation as

yz—xz)’%

% 5

Pg-=1 7 %2 (3-15)
o0

revealing the rational unimodular matrix

_ 1pfaer i (3-16)

- Y2

We can then transform the situation and map thelattice L(V 1, V5, V 3) to another latticewith
Dy2 —x,

D
D_yl

the help of the matrix R = dU-1 = «
1
D

In the case where X = X3 and y = y; the numbers Epk%% and EpMyTle become
U U U U

respectively thevalues x and y already introduced. Operator R maps L(V 4, V) bijectively

to the subgroup { (m, n)d | m,n 0 Z} andthelattice L(V,, V,, V) tothelattice generated

by (3, 0), (0, d), (X, Y), which isthe assertion of Lemma 3-4. &
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The lattice RL(V 4, V,, V3) isdoubly periodic of periods & and 6. Through R the set p is
mapped to the modular sequence

(kx mod &, ky mod d) (3-17)

which can be written also as
k_)( k_ 0 =0 2 3-18
%5}[5y:|u k , 1, ,,(p) ( 1)

Thus the complexity in generating the set p is reduced to the computation of two modular
sequences, which can be done with additions and comparisons only, avoiding divisions. This
can even be reduced once more by introducing the particular value of k, say n, for which

nx = gcd(x, 8) mod d (3-19)

For this value of k, the other sequence is equal to ny mod 9, that we shall denote €. Obvi-
ously the set of points Rp can be built by the sequence

]
kood(x, ), B k= 0.1,2,..v(p) (3-20)
O 0°

which now needs only one modular computation for each step. Finally, with the former
notations, we obtain:

Th 3-1. The set be built in lomg— 8 computations of

eorem =1, e can pe pul In Icm ) com ations of a
P Fed(x, 8)' ged(y, 8)5 O™

modular arithmetical sequence of type [k—eﬂ

3.3. Defining 3D digital lines

The lattice £ introduced in section3.2 is a rationa lattice contained in the plane
(P) ax+by+cz=0. It is generated by the three rational vectors V; = 11(1,0,0),

V, =m0,1,0) and V5 = 1(0, 0, 1), where Tt isthe orthogonal projection on (P).
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Figure 3-4: Thelattice £ as projection of the fundamental basis

Thefigure showsthe fundamental basis (i, j, k) of 3, itsprojection (mi(i), 1i(j), T(k))
on aplane (P) and thelattice £ (brown dots).

These vectors can be easily written intermsof a, b, ¢ and w? = a2 + b2 + ¢2:

2 2] 0 _ Ul 0 _ Ll
. %3 + 2 . ab L0 ac
W] O wg 0 W, 0
0-ac g 0O -bc g @ +b°g

Asthese vectors are coplanar, we are in asituation almost similar to that of Section 3.2.1. To
reduceit exactly to this case, wejust haveto clear out the denominator w?. Thelattice generated
by w2V, and w?V, isarank two group isomorphic to L(V 4, V,) of section 3.2.1. The only

difference between both situations is that vectors w?V,, w?V,, w?V5; now belong to 73
instead of Z2, but all the preceding results go through, with the obvious modifications.

Theorem 3-2. Thereisa 3 x 3 rational matrix R, which maps the lattice £ bijectively on
the sub-lattice L((c, 0), (0, ¢), (a, b)) of 7% This operator maps Tt fibers on lines which
project on direction (a, b) .

Thisimage RZ£ is called the simplification (or reduction) of £ and it is denoted by £ .

In the same way image Rp is denoted f) and image RPar is denoted by Par . Of course

Par = [0,c) x[0, c) isthe new tile of the simplified lattice.
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Proof. The projection Tt is not invertible, but we can still find operators which are almost
inverses of it. (The map 1t being afibration, such inverses are usually called sections of ).

A possible section is given by the mapping

0o V;-(100)
% V, - (0,1,0)
E(O, 0,1) - (0,0,1)

As Tt isthe operator defined by

[(1, O, 0) g Vl
U

%(O, 1,0) -V,
[0,0,1) - V,

its matrix (still denoted 1) is

Eo2+c2 —-ab -ac E
1
n= -7 2% _ab a’+c® —bc E
a +b +c s o
J—-ac -bc a +bj
Thus our problem isto find the inverse of the matrix T:
Epz+c2 —ab 0 E
1
1= 57 zg—ab a’+c’ 0 E
a +b +cg 2. .2 A
J-ac -bc a +b +c
A simple computation gives
EF‘Z“LCZ ab OE
-1 1
1 =—25 ab b*+c? OE
CO o]
] ac bc ¢

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)
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If welet R = ¢t and evaluate the images of V,,V, and V5 by R we respectively find
the vectors

(c,0,0), (0, c, 0), (-a, b, 0) (3-27)

This proves that the operator R bijectively maps L(V 4, V,, V3) on the integer lattice

L((c, 0, 0), (0, c, 0), (—a, —b, 0)) . We dso remark that thislast oneisthe same asthelattice
L((c,0,0),(0,c,0),(a,b,0)).m

By definition (see Section 3.2), points of p are the projections of 1t fibers. In this sense the

image £ canbe seen asthefeet of all thesefibers, But this strict planar interpretation is not the
only one which can be deduced from the preceding computations. The most striking isthe result

0 el

of the computation of REbE = FEB)E because it proves that the lines directed by (a, b) are
0O *t0O

actually the projections of the images of the fibers by operator R, on the xOy plane. Besides,
asV,; = 1(0, 0, 1), the points of theform k [RV; = k(a, b) , where k I Z, represent the sec-
tions of these fibers by the horizontal planes z = k.

Moreover the set p of points of L(V 4, V,, V3) contained in the parallelogram built on V
and V, is mapped, by R on the set p of points of the 2D latice
L((c, 0,0),(0,c,0), (—a,—b, 0)) contained in the square [0,c) x[0,c) = Par which is
much simpler to study.

Of course, since V,; and V ,, the respective projectionsof (1, 0, 0) and (0, 1, 0) , are mapped
onto (c,0) and (0, c), the unit cubes of Z3 can be seen as the tiling induced by
Par = [0,c) x[0O,c).

Finally we obtain the following:

The simplified lattice L gives the intersection scheme of the euclidean line, directed by
(a, b, ¢), with all the voxels of space.

A closer look at Figure 3-5 reveals this nice interpretation. The medium-sized and bigger
pointsin Figure 3-5 represent the projection lattice of Z3 along thedirection (5, 9, 17) . On this
figure, theline that isdrawn is the image of the fiber of the projection that goes through the ori-
gin. The points of the form k(5, 9) on this line are the sections of the fiber by the horizontal
planes z = k. Thehorizontal lines |c and the vertical lines mc are the respective images of the
vertical planesy = | and x = m. Thus by considering the positions of the points k(a, b) for
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Figure 3-5: Thereduction of thelattice £ associatedtoa = 5, b = 9,¢c = 17

The smallest points are integer points of Z2, the medium ones are the points of £ ,
while the largest ones belong to the lattice L((c, 0), (0, c)) . The set p is made of the
medium points contained in the square Par = [0, 17) x [0, 17) . The pointslocated on

the line of slope g, are the first multiples of the third vector (a, b) = (5,9). Their

reduction modulo ¢ = 17 give some of the pointsof [0, 17) x [0, 17) .

k =0,1, 2, ... wecan say that the euclidean line directed by (5, 9, 17) goes through the ori-
gin, thencutstheplanez = 1 inthesquare [0, 1] x [0, 1] ,theplanesz = 2 and z = 3 inthe
square [0, 1] x[1, 2], theplane z = 4 inthesguare [1, 2] x[2, 3], ...

From this interpretation of the projection lattice we can derive afirst notion of a 3D digital
line:

Definition 3-1. The naive digital 3D line through the origin, directed by (a, b, ¢), (where
O<a<b<c, gcd(a b, c) = 1, isgiven by the parametrization

[
[

|

(3-28)

I:IQ:II:II:IQ

Page 53



3 Theoretical Aspectsof 3D Digital Lines
Defining 3D digital lines

Figure 3-6: Thedigital line D(5, 9, 17)

or equivalently

CX t+az<c

< —
= (3-29)
Eps —cy+bz<c

It isdenoted by D(a, b, ).

Weremark immediately that thisnotion isidentical with the usual 3D discrete line built by the
double 2D Bresenham algorithm [32] and whose arithmetic formul ation based on the definition
of 2D digital lines (Section 2-1) was given by Debled-Rennesson [15]. The set made by the feet

of thefibersforming D(a, b, c) isexactly p.

When considered in R3 instead of Z3, Equation 3-29 defines a generalized continuous cyl-
inder having for intersection with the plane xOy (main plane orthogonal to the axis Oz along
which the direction of the line has its biggest coordinate) a square of side 1. This provides
another characterization of adigital 3D line:

Proposition 3-1. The set of integer points contained in a continuous cylinder of axis (a, b, )

with 0 < a<b < c and whose intersection with the main plane xOy is a unit square, is a
digital 3D line.
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3.4. Reading the topology of a 3D line on the projection lattice

From the previous interpretation of the reduced projection lattice L, wecan seethat the only
steps between two consecutive points of the fiber that generate an x increment are those that
cross one of the vertical lines mc, i.e., those taken from points close enough to aavertical line

mc. When reduced to modulo Par these points correspond to the points in a vertical strip
[c—a,c) %[0, c).Similarly the only steps that generate a 'y increment are taken from points
an horizontal strip [0, ¢) X [c—Db, ¢) andtheonly pointsthat generate both x and y increments
at the same time are those take from pointsin the common region [c—a, ¢) X [c—b, ¢) . Thus
the fundamental square Par = [0, ¢) x [0, ¢) of lattice X = L((c, 0), (0, c)) can bedivided
into four zones that we will denote as (1), (2), (3) and (4), see Figure 3-7. This gives a partition

of p which governs the topology of the line D(a, b, c).
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Figure 3-7: Thefour zones of thelattice associated with D(5, 9, 17)

We can seethat along anaive 3D digital line of direction (a, b, ¢) aspreviously defined there
are three types of adjacency only:

* strict 6-adjacency when two voxels share one common face. 6-adjacency occurs along
the z -axis only, i.e. shared faces are always parallel taGlye coordinate plane.
(Zone (1))

» strict 18-adjacency or edge-adjacency when two voxels share one common edge. This
type of adjacency occurs along the -axis, (when the shared edge is paralled to the -
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axis) or aong the x-axis (when the shared edge is paralel to the y-axis). (Zones (2)
and (3)).

* strict 26-adjacency or corner-adjacency when two voxels share one common vertex.
This can occur for two of the eight vertices of a voxel only: the closest and the furthest
from the origin. (Zone (4)).

We immediately deduce the following results from our description of 3D digital lines.

Proposition 3-2. The number of face-adjacenciesin one period of a naive 3D digital line of

direction (a, b, c) is equal to the number of points of L contained in the rectangle
[0,c—a) x[0,c—Db) (zone (1)).

Proposition 3-3. The number of edge-adjacencies along the y -axisin one period of a naive

3D digital line of direction (a, b, ¢) isequal to the number of points of £ contained in the
rectangle [0, c) x [c—D, ¢c) (zone (2)).

Proposition 3-4. The number of edge-adjacencies along the x-axisin one period of a naive

3D digital line of direction (a, b, ¢) isequal to the number of points of £ contained in the
rectangle [c—a, c) x [0, c) (zone (3)).

Proposition 3-5. The number of corner-adjacenciesin one period of a naive 3D digital line

of direction (a, b, c) is equal to the number of points of £ contained in the rectangle
[c—a,c) x[c—Db,c) (zone(4)).

Theorem 3-3. The three projections onto the main planes (xOy) (yOz) and (xOz) of the naive
3D digital line D(a, b, ¢) are naive 2D digital linesiff fs n[c—ac)x[0,c—b) =01

3.5. Combinatorially distinct 3D lines

Definition 3-1 shows that our approach contains the former classical digital lines, but also
many others that we can build by an extension of the previous notion. This situation is similar
to that of 2D lines [46]. Up to this point we have defined and built 3D digital lines from the
points of £ contained in one of the fundamental domairss of L((c, 0), (0, ¢c)) . In fact we
can also consider the collections of fibers whose feet are contained in other fundamental
domainsB ofKX . We can prove that each tiBie £  8-t®nnected for the topology of the
minimal basis of £ thentt1(B) is a valuable notion of a 3D digital line.

We can extend the idea even further and consider domainsfover  other than fundamental
domains of K . An especially interesting case consists of fundamental domains of lattices
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7 (s, t) generated frominteger affine translations of K . Asthefundamental domain Par of K
contains ¢? integer points, there exists ¢ such lattices 7(s, t), (s, t) O[0,c) %[0, c) . For
each possible integer trandation of vector (s, t) of Par it ispossibleto build anew 3D digital
line leading to c? different digital lines of direction (a, b, ¢). Actualy these c? different lines
can be grouped into ¢ classesof c digital lines having an equivalent structure within integer 3D
trandation. Thus given an integer direction (a, b, ¢) thereexist ¢ combinatorialy distinct pos-
sible structures of the corresponding digital line. This is due to the fact that any fundamental
domainof £ hasan integer areaof ¢ andtiles Par into c subtiles (Figure 3-8 and Figure 3-9).

Figure 3-8: Reading the structure of combinatorially distinct linesfrom £

Two affine tranglations of the fundamental domain of % and the corresponding 3D

digital lines. The hatched area represents the fundamental domain of £ which hasan
areaof c.

Thisrelation between the simplified | attice £ andthe topological structure of 3D digital lines
offersanew interesting point of view. It could certainly lead to amethod for determining which
line among the combinatorial variationsisthe closest digital connected set to an euclidean line
though this remains to be done.

3.6. Intersecting discrete 3D lines and planes

We now apply Definition 3-1 to aparticular problem: determining the intersection of adigital
3D line and a digital plane. Section 2.5.1 has shown that the intersection of digital sets can be
particularly complex even though the intersection of the euclidean counterpart is very simple.
Intersecting aline and a plane is a very basic operation in computer graphics and is used in all
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S
il

Figure 3-9: Combinatorial variations of D(3, 4, 5)

The 5 combinatorially distinct possible structures of the digital line of direction
(3/4,5). Two periods are represented in each example.

ray-casting algorithms. Though the vast majority of ray-tracing implementations involves con-
tinuous models and thus euclidean lines and planes, some attempts at a full discrete version of
the ray tracing algorithm have been made especially by Y agel, Cohen an Kaufman [57]. In such
an algorithm intersecting a discrete ray (3D digital line) with the surface of an object (which
may be represented by a surface mesh, i.e. pieces of digital planes assembled together) is the
core operation. As such, it is the most consuming part and most of the effort is generally put in
accelerating that calculation sometimes neglecting some theoretical aspects. The following
study on the other hand, tries to emphasi ze the precision of the discrete intersection calculation
from atheoretical point of view and describes the exact set of discrete points that make up the
intersection. This could find for instance a possible application in the anti-aliasing of ray-traced
images following ideas developed by Amanatides [1].

Let us consider the naive digital line D(a, b, ¢, 4, i) with a definition generalizing the one
given in Definition 3-1:

<-— +az<u+
Dabcuw): oo TasRee (3-30
< —cy+bz<pu' +c

where all parameters are integers and the direction (a, b, ¢) verifies the usual restrictions, i.e.
a, b and ¢ are mutually prime and strictly positive (see Section 2.1). As aready mentioned a
digital line of direction (a, b, c) defined inthisway can be seen asthe intersection of two digital

planes orthogonal to the plane of normal (a, b, ¢) and respectively to the (xOz) and (yOz)
main coordinate planes. Therefore, theintersection of anaive 3D digital linewith adigital plane
Is in fact the intersection of three digital planes which is similar to the equivalent continuous
problem.
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Figure 3-10: Intersection of D(7, 15, 23, 0) and P(-8, 29 —15-25)

We want to determine the intersection of D(a, b, c, 4, 1') with the digital plane
P(d, e f,v, p) defined asin Definition 2-2 with the additional restriction ad + be + cf > 0. The
guantity being non null avoids the degenerated cases where the line and plane have no intersec-
tion or thelineiscontained in the plane. The expression being positive can always be guaranteed
since considering one of the opposite vectors —(a, b, ¢) or —(d, e, f) does not modify the
intersection.

The following matricial system defines this intersection:

1 oo ama e

(MW'O0<00 —b @m +CD (3-31)
O O

Of course this system must be solved in Z3. Thekey ideaisto find an appropriate unimodular
matrix U (i.e. having a determinant equal to 1) that makes the system easier to solve. The
important fact concerning 2/ isthat it is a bijective transform of Z3. In other words we want
to map the intersection points from the original space where coordinates are denoted (X, Y, z)
into another one where they are denoted (X, Y, Z) and wherethe set of points of the intersection
appears more regular.

[

Let (u,v) and (u’, v') two pairs of integers such that
au+cv =1 (3-32)
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and
bu +cv' =1 (3-33)

We find successively:

qeoafdvoald § 1 o o j
00 b0 -100=0 bu ¢ bc O (3-34)
Ed e f%u 0 CE E,—dv+fu—ead+cf%
U,
Weintroduce theintegers d', € and f' to ssimplify the notations:
%U' = —dv+fu
g = —e (3-35)
%’ = ad + be + cf
we have then
O o O O
H 1 0 o %100D H1 00¢
% bu ¢ bc EIZOl—bD=EbUCOE (3-36)
Fdv+fu—ead+cfgpo 18 Ha e g

U,

In addition we requirethat € and f' berelatively prime which ensuresthat there exist (m, n)
such as:

me' +nf =1 (3-37)

Then we can write

O [ o O O
100 100DD 1 00

U] U]
Ebu cOo0OFmd 100= Ebu—md’c C OE (3-38)
o efind 018 § o erg

Uy
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E—v—and' 0 a%

U=UUU; = Odm—-bnd -1b O
, O

gu-cnd 0 cp

U transforms Equation 3-31 into

with

1 oo%(g %1+CE

EPJDD
O 0
M'O<Obu—-md'c ¢ O [TYO< ' +c
0O 0O c e 03,0 0
¥gg o ef%mgwm

et
:

7 o0

(3-39)

(3-40)

(3-41)

Sincethe scalar product f' = ad + be + cf isstrictly positive according to our initial hypoth-
eses, we can rewrite Equation 3-40 as the following expression:

HSX<pu+cC

Y = md’X—[—bui_ “}

sz =2

I:II:III:IDDDI:II:II:I

(3-42)

from which we can immediately deduce the following intersection scanning algorithm:

where & denotes the quantity EFL E

o

Equation 3-42 shows that

» X steps througle values

« for each ofX there is a unique valueYof

 for each value oY there are:
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for X=H to X=pn+c—-1 do {
Y = md'X—[———bux_”]
Cc
if (p—0)>0 then do

for Z:—[eY,_q to Z:—[w} do
f f
O M
O S(III
Pl ot Voxel [/ (Y[
O M
O %!Il

Figure 3-11: A digital line/planeinter section algorithm

‘_[__ﬂ valuesfor Z if 6<f'—D_PE

f nf o

0_[_—P}—1valu%forz if 62f’—%_—,pg
f of o

Proposition 3-6 follows immediately:

Proposition 3-6. The intersection of a naive three-dimensional line D(a, b, ¢, 1) and a
digital plane P(d, e, f,y, p) consistsof N voxelswith

- c{_f—p} —c<N< —c{_f—,p} (3-43)

The complexity of the algorithm to calculate the intersection between a 3D digital lineand a
digital planeis O(N) where N isthe number of voxels contained in the intersection.

3.7. Incremental intersection of parallel adjacent 3D lineswith a plane

For some common applications like parallel projections it may be necessary to compute the
intersection of adigital planewith aset of parallel adjacent digital lines. The classical approach
trying to calculate these intersections incrementally based on euclidean geometry and floating
point arithmetics is sensitive to error accumulation and may be tedious to adjust. On the other
hand, the simple algorithm presented previously has very interesting properties which offer a
particularly efficient solution to the problem and avoids numerical drifts.
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We shall carry the demonstration for a set of naive parallel digital lines adjacent along the x -
axis. The problem being perfectly symmetrical, the results will be easily transposed to adja-
cency along the two other axes.

According to Equation 3-30, we define the naive 3D digital line of direction (a, b, ¢) going
through the integer point (Xy, Yo, Z) as the subset of 73 verifying:

[+ CXy +azy< —cX +az<-cxpyt+az,+c
O (3-44)
[FCYyo+ bzy< —cy+bz<-cy,+bzy+c

Assuming that the intersection between the line going through (X,, Yo, ;) and the plane
P(d, e f,v, p) isknown, wewant to determine the intersection of this plane with the line going

through (X, + 1, Yo, Zp) -

We denote with the , subscript, values related to the intersection with the line going through
(Xo» Yo Zp) and with the g, subscript, values related to the intersection with the line going

Od O
O, + O O
: . . O O
through (X, + 1, Yy, Z,) . We also denote with n X, the following quantity Ny, = —
which can assume only two values: O or 1.
A simple calculation making use Equations 3-39 to 3-41 yields:
Xxo +1 7~ xx0 —C
Yy,+1 = Yy, tbu—mdc
- ' d
inf, ., = Zint, TU—nd C_[FJ Ny, (3.45)

where Z, ¢ represents the lower bound of the interval of possible values of Z for a given Y

(Equation 3-42).
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These results can be trandlated into the (X, y, z) space where they appear smpler:

d
Xeo+1 = X F 1—a[ﬂ —an,

d
Yy, ~ b|:f_’J —bn Xo (3-46)

yx0+ 1 0

_ d
Lo+1 = ZXO_C[FJ —CNy,

Then we derive immediately from these equations the agorithm in Figure 3-12 and
Figure 3-13 which is presented without full optimization for the sake of clarity. The calculation

Definitions and allocations

Define type Voxel as a record of 3 integers denoted x, y, z

nbinterMax=-div( ,f)p The maximum number of intersection point for each
X value

Al | ocat e interVox as a 2D Array of Voxel of size (c,nbinterMax)
Al | ocat e Oas an Array of Integer of size ¢
Al | ocat e N as an Integer The number of intersection points for a given X

Initialization for thefirst line
Fori fromO toc-1 do
X=a*z0 - c*x0 + i
Y = m*d*X - div(b*u*X,c)
Z =-div(e*Y- ,f) vy
O (i) = mod(e*Y - ,f) vy

If &)+ mod(- ,f)p="F t hen
N(i) = nbinterMax
O herw se

N(i) = nbinterMax-1
For j fromO to nbinterMax-1 do

interVox(i,j) = matrixVectorMultiply (U, Vector(X,Y,Z))
Forj fromO toN-1 do

PlotVoxel(interVox(i,j))

Figure 3-12: Incremental plane/multi-line inter section algorithm (initialization)

of consecutive intersections with adjacent lines involves only additions and a few tests. It is
therefore very efficient.

3.8. Summary

The in-depth study of 3D digital linesis alargely open subject and few results are available.
Since the developmentsin this area of research are largely driven by the necessities of practical
applications, people generally focus on agorithmics more than on theoretical aspects. Even
though the third dimension makes the problem much more intricate, there exist promising new
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Loop for the remaining lines
For xOffset fromO to nunberOfLines-1 do
For i fromO to c-1 do

If &i)+mod(d,f)>=f t hen
O (i) += mod(d,f) - f'
For j fromO to nbinterMax-1 do

interVox(i,j).x += - a*div(d,f)-a+ 1
interVox(i,j).y += - b*div(d,f") - b
interVox(i,j).z += - c*div(d,f) - b

O herw se

0 (i) += mod(d,f")

For j fromO to nbinterMax-1 do
interVox(i,j).x += - a*div(d,f)-a+ 1
interVox(i,j).y += - b*div(d,f’) - b
interVox(i,j).z += - c*div(d,f’) - b

If &i)+mod(- ,f)yp=F t hen

N = nbinterMax

O herw se
N = nbinterMax-1

Forj fromO toN-1 do
PlotVoxel(interVox(i,j))

Figure 3-13: Incremental plane/multi-line inter section algorithm (continuation)

approaches. Thus, using the projection of Z3 onto an euclidean plane, we have shown that the
structure of a3D digital lineisin correspondence with the structure of a2D integer lattice. This
approach considerably extendsthe classical notion based on 2D Bresenham lines and opens the
doorsto new results. Among these we have presented a classification of lines of a given direc-
tion into classes of equivalent combinatorial structure and suggested that the same approach
could lead to a solution to the problem of the closest digital connected set to an euclidean line.

An algebraic definition, equivalent to the classical definition of 3D lines based 2D Bresenham
lines, can be deduced from our approach. We used it to solve the intersection between a 3D dig-
ital line and adigital plane. Unlike usual algorithms based on euclidean geometry that content
themselves with the integer point that is closer to the real intersection of the euclidean objects,
we are able to determine precisely in O(N) time (N being the number of voxelsin theintersec-
tion) the exact intersection between the digital line and plane, no matter how complex that
intersection is. Moreover, unlike algorithms based on continuous geometry which are very sen-
sitiveto error accumul ation when extended to the incremental cal culation of the intersections of
a plane with a series of parallel lines, our result can be generalized with no numerical drift to
solvetheintersection of adjacent digital lineswith the samedigital planein anincremental man-
ner also in O(N) time but with much simpler calculations.
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4 Digitization of Bézier Curves and Surfaces

This chapter introduces a new subdivision criterion leading to a scan-conversion algorithm of Béz-
ier curves and surface patches that is compatible with the results of discrete geometry and does not
rely on arbitrary precision constants.

4.1. Introduction

Bézier curves and patches are among the most fundamental primitives in computer graphics
and computer aided modeling. However, as they are defined by means of mathematical equa-
tions, they are continuous objects which are not ideally suited for a computer representation.
Discrete geometry aims at providing an equivalent of these mathematical objects in the same
way as it has established formal definitions of digital lines and planes [46]. A first step towards
this goal consists in developing a discretization algorithm of continuous Bézier curves and
patches which would be consistent with existing results in discrete geometry. In this section, we
propose such an algorithm. Our approach is based on a classical De Casteljau recursive subdi-
vision algorithm but with a new flatness criterion based on the digital geometry of lines and
planes which guarantees a recursion depth close to optimal and appropriate geometric and top-
pological characteristics of the obtained discrete curve or surface with no need for arbitrary
constants. Moreover, though we restrict our presentation here to the case of cubic Bézier curves
and patches for the sake of clarity, it is a remarkable fact that the approach is general enough to
be easily extended to higher degrees and dimensions.

4.2. Existing approachesto the problem

There exist essentially two different approaches to the scan-conversion of Bézier curves and
surface patches [23]. The first one uses the parametric representation of the curve and evaluates
repetitively the equations using forward differencing. Forward differencing is a fast and effi-
cient technigue which can be hardware accelerated. However it suffers from two major
drawbacks: first, it is a floating point algorithm subject to numerical drifts due to error
accumulation [8] and whose implementation requires great care and a register width depending
on the number of pixels to draw, furthermore there is naturally no linear relation between the
parameter and the coordinates of the drawn points. Hence a regular subdivision of the parameter
interval, though simple, is particularly inefficient since it can lead to many unneeded evalua-
tions drawing the same discrete point (if the parameter interval is too small) or holes in the curve
respectively patch (if the parameter interval is too big). Therefore refinements such as dynamic
step size adjustment are preferred [8, 21, 55]. But even in that case there is still a need for choos-
ing a parameter increment and criterions for deciding when to scale that increment [21].
Unfortunately all those criterions are based on some geometrical value (surface of a triangle,
distance between a point a line, angle) being “small” and thus require determining a tolerance
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constant which, in practiceis often chosen arbitrarily and whose relation to the sampling grid is
not clear.

The second approach uses the De Casteljau algorithm [19], a stable and efficient method with
intrinsic adaptiveness to the curve. This method consistsin recursively subdividing the control

polygon (Pg, Pcl), Pg, Pg) into two sub-polygons (Pg, Pé, Pg, Pg) and (Pg, Pf, P%, Pg)
(Figure 4-1) where the P} are defined as weighted sums of polygon vertices:

n+1
P!

= aPl+ (1-a)P], a 0[0, 1] (4-1)

At each step the area of a new control polygon is smaller and hence is closer to the Bézier arc
which remains invariant along the process. The recursion can be stopped when the control poly-
gon is close enough to the curve.

Figure4-1: De Casteljau Subdivision

Theorems exist that indicate when the maximum distance between the arc and the control
polygon is smaller thag, based on the geometry of the sub-polygons [39, 56] or directly based
on the initial control polygon and the recursion depth [34]. All of these results rely on the choice
of an ad hoc constaatwhich makes them quite unsatisfying from a theoretical point of view.

In what follows we show that we can eliminate the need for such a constant.

4.3. Polygonalization of cubic Bézier curves using digital lines

We denote with [r] theinteger part of r [0R , i.e., the greatest integer smaller than r. Simi-
larly we denote with [R] theinteger point of Z2 (resp. Z3) whose coordinates are the respective
integer parts of the coordinates of ROR? (resp. R2). Let us consider an arc of integer endpoints
(P, Q). We cdl axis of the arc, the line defined by its two endpoints. The vector PQ is the
direction of the arc. We also call width of the arc, the diameter of the smallest cylinder of axis

(P, Q) that encompasses the whole arc. And similarly we call width of a set of points of R2,
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E = {Pi} .., Withrespect to the direction (a b) [ 72, the diameter of the narrowest cyl-

inder of axis (a, b) that encompasses E. Thiswidth Wia, b)(E) isgiven by:

dia({aP;, +bP,} i <)

E) = 4-2
where dia(A) for asubset X of R isdefined as:
dia(X) = max, 5 x(x) —min, 5 x(x) (4-3)

Theorem 4-1. Let C be a planar arc of integer endpoints P, Q and of width w. If
max(|PQ,, |[PQ,|)

w <
IPQI
digital straight line segment of direction PQ.

then the best 8-connected integer approximation of C is a naive

Proof. Equation 2-4 defines a naive digital line as the set of integer points contained in a
continuous strip of the euclidean plane. The width w of this euclidean strip relates to the

P
N
max(|PQ,|, |PQ,|)

]

within the real boundaries of a naive digital line and hence there cannot be a better integer
approximation to C than anaive digital straight line segment. &

arithmetic thickness of the digital line p through the relation w =

then it fits

Section 2.2). It becomes clear then, that if C verifies w<

Theorem 4-2. Let B be a planar cubic Bézier arc defined by its control polygon
(Po, P4, P,, P3), B can be optimally represented by a naive digital straight line segment of

direction [PP4] iff

dia({aP,, + bP )< gmax(lal, b)) (4-4)

iy}OSiSS

wherea = [P3 ] —[Pg,] andd = {P3,] +[Pg,]

Proof. Wang’s theorem states thRatlies at mostgmax(d(Pl), d(P,)) away from its axis

whered(P;) denotes the distance of pétnto the axis and that this bound is optimal [56].

Furthermore the convex hull containment property of Bézier curves statBdidsaentirely
within its control polygon [19]. Therefore the width Bfis at most 3/4 of the width of its
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control polygon with respect to theline ([Py], [P5]) , thewidth of the control polygon being
dia({aP +bP;} o i 3)

a2 + b2

A control polygon verifying Theorem 4-2 is said to be flat and the recursive subdivision can
be stopped at that level. If the control polygon does not meet the criterion of Theorem 4-2 then
it is subdivided into two sub-polygons according to Equation 4-1. Equation 4-1 |leaves a degree
of liberty in the choice of a . Optimizing this value at each recursion step yields a digitization
with the minimum number of discrete segments. Such optimization however falls beyond the

given by

. The result then follows directly from Theorem 4-1. B

scope of thiswork and in practice a = % isthe usual choice.

Theorem 4-2 does not provide the compl ete equation of the digital line segment that isthe best
approximation of the spline arc but only its direction. The affine offset y must also be deter-
mined. The ideal value of y which yields a discretization by the closest integer corresponds to
the midline (axis) of the narrowest cylinder of direction ([Pg], [P5]) enclosing the curve within

its control polygon. In order to find an algebraic formulation of y, we must distinguish two
cases depending on whether the curve crossesthe line ([P,], [P3]) or not.

1. Thecurvedoesnot cross ([Py], [P5]) . In this case the curve lies between the line
([Pol, [P5]) andaparallel at threefourths of the distance of the most distant point of the control
polygon (which may be P; or P,) to that line. Assuming that point to be P, , y becomes:

- [3(aP1X +bP,,) +5(aPq, + bPOy)J _ [max(lal, Ibl)} (4-5)

8 2

2. Thecurvecrosses ([Pg], [P5]) - In this case the curve is enclosed in a cylinder of direction
[PoP3] whose axisis midway between the points P, and P, . Hence y becomes:

aP,, +bP,,) + (aP,, + bP
y = [P0t BPu) * (3o DPay)] _ Fman(al 0] 6
2 2
A criterion for digitizing 3D Bézier curves stems from the same principle as for 2D Bézier
curves: the De Casteljau recursion stops and the curve segment can be rendered as a discrete
line with no loss of precision when the convex hull of its control polygon is bounded by the lim-

its of a 3D digital line as defined in Equation 3-29. Denotiag= [P3,] — [Pyl ,
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Figure 4-2: Discretization of a Bézier arc

A Bézier arc described by two flat control polygdiPo,Py,P,,Ps) and

(P3,P4,P5,Pg). The round dots are the integer points making up the discretization of
the Bézier arc. The dash-dotted lines represent the axes defined by Equation 4-5 while

the simple dashed lines represent the real boundaries of the digital line segments as
defined by Equation 2-4.
b = [Pg] —[Pg,], ¢ = [P3,] —[Pg,] and assuming |c| = max(|al, [bl, |c[), the condition
writes:

. 4
Eblla({—cPix+ aP} o ica) S §|C|

O 4 (4-7)
lia({~cPy, +bPi} o 5) <300

The affine offset proposed in Equations 4-5 and 4-64-6 still holds, with the same restrictions,
in this case by considering independently the projections of the control polygon on the main
planes xOz and yOz.

4.4. Digitization of Bézier surface patches

We call naive digital plane patch a non-empty 26-connected subset of a naive digital plane
P(a, b, c,y) defined as a non-empty polygon on that plane by the following set of equations:

L] CoxX + doyY + 0p,Z<Ag

il
Q(a, b, c, y’ (qk’ )\k)0<k< m) P(a, b, c, y) n E quX+ quy+ quZ< )\1
T H

Eh(m—l)xx + Om_nyyY + Um-1Z <Az

(4-8)

where q, 0273 and A\, 0 Z for 0Osk<m.
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Special interesting cases of naive digital plane patches include digital quadrilaterals (m = 4)
and triangles (m = 3).

3D bicubic tensor-product Bézier patches as well as Bézier triangles can be approximated by
naive digital plane patches as defined by Equation 4-8. Indeed the De Casteljau recursive con-
struction is general and still applies in those cases.

Theorem 4-3. Let B be a bicubic Bézier patch defined by its control(ﬁ’gg)o<i<3 . Let

u-= [Po,o][Ps,oLV = [Po,o][Pslg] andn = uxv = (ab,c) .If

diaf a(P, ), +b(P, )), +c(P, D, Ds max(|al, b, |c|) (4-9)

then the best 26-connected integer approximation of B is a digital plane patch of normal
directionn.

Theorem 4-4. Let B be a Bézier triangular patch of degree d defined by its control net

(Pijdo<i i ks<d” Letu = [Pgp3l[P3go] 'V = [Pgosl[Pozp] andn = uxv = (a,b,c) .If
i+j+k=4d
diad 2P * DPydy * CPidzdo<i j < B maxlal, ol el (4-10)

i+j+k

then the best 26-connected integer approximation of B is a digital plane triangle of normal
directionn.

Proof. Since the containment property of Bézier patches and triangles within their control net
holds, Equations 4-9 and 4-10 being verified amounts to the whole sBrigiog between

the limits defined by Equation 2-8 for a naive digital plane of diredt&om, c) B

The value of the affine offsgtof the digital plane that represents the digitizatioB bfy the
closest integer point is given by:

min(a(P ) +b(PI]) +C(P'J) )o <3
- . 1°° (4-11)

max(a(Py ;), + b(Py ), + (P j),)

sj<? _[max(|a|2, b, |c|)}

2
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4.5. Connectivity issues
4.5.1. Connectivity of digitized Bézier curves

The construction proposed previously for discretizing a 2D Bézier arc actually builds a con-
tinuous polygonal line (the dash-dotted line of Figure 4-2) whose discrete counterpart is the
discretization of the Bézier curve. Thus the overall discretization forms an 8-connected path
which is the most reasonable requirement for the discretization of a perfectly general Bézier arc.
In simple cases, if the Bézier arc does not have too important changes in orientation, its overall
discretization forms a 8-connected simple curve, i.e., every point of the discretization has
exactly two 8-neighbors except for the endpoints (if the curve is not closed).

In the case of 3D Bézier curves the proposed construction does not create a continuous 3D
polygonal 3D line since the midlines of consecutive segments may not be coplanar. However it
can be shown that the overall discretization is still 26-connected.

Theorem 4-5. Let D, and D, be two digital 3D lines as defined in Equation 3-29 and let
H, and H, betheir respective real square-based enclosing cylinders. If H; n H, # O then
D, and D, intersect or have two 26-adjacent points

Proof. If H; n H,# [0 then that intersection contains at least a real pyik,, Yo, Z,)
Since P, is contained in the enclosing cylindey  Dof D,, contains an integer point
I,(X4, Yq, Z;) such that
X=X <1
E‘Y1_YO| <1 (4-12)
0z, -2 <1

A similar statement holds fdd,  which contains an integer ggiiX,, Y, Z,) such that

U
Qﬁ—m<l (4-13)
02—z <1

Hencel, and, are atleast 26-adjacent if not equal which proves the thBorem.

Each segment of 3D digital line making up the discretization of a 3D Bézier curve is the set
of points contained in a truncated square-based cylinder (see Proposition 3-1 in Section 3.3).

Page 73



Digitization of Bézier Curves and Surfaces
Connectivity issues

Consecutive cylinders always have a non-void intersection since they contain at least one com-

mon real point (the point that is common to the two consecutive Bézier control polygons which
is also part of the Bézier arc itself). Thus, thanks to Theorem 4-5, 26-adjacency between con-
secutive discrete straight line segments is guaranteed.

4.5.2. Connectivity of digitized Bézier surface patches

The connectivity problem becomes more intricate in the case of the digitization of Bézier sur-
face patches where discrete connectivity has to be controlled along the whole length of the edges
of patches in order to ensure that the resulting discretizatial lizoxelized in the sense of
[11]. This involves determining the appropriate bounds of the equations defining the discrete
plane patch in Equation 4-8. We examine the problem in the case of bicubic tensor product Béz-
ier patches though the results still hold in the case of Bézier triangles. The connectivity problem
of surfaces defined by adjacent discrete polygons has been studied by Andrés et al. [4] in the
case of thick tunnel-free polygons, it still remains mostly open in the case of polygons based on
naive digital planes and we only provide directions towards formal proofs.

Let B andB’ be two adjacent Bézier bicubic tensor-product patches verifying Theorem 4-3
and having for respective control n¢t3, J-) i &rd ) suchRhat P’; for
" 0< <3 "0<.<3 ' '

0<i<3 (Figure 4-3).

Figure 4-3: Adjacent bicubic Bézier control nets

Let Q(a b, ¢y, (dp A gok<g) and Q' (2, b, ¢V, (A" A< k< 3) PEtwo naive digital
plane patches and let us denote H and H’ their real enclosing paralelepipeds defined in
Equation 4-3. We consider two different cases depending upon whether (a, b, c) and
(a', b, ¢") have the same main direction.

1. (a, b,c) and (a’, b', ¢') havethe same main direction. Let usassumethat thisdirectionis
Oz This condition writes ¢ = max(|al, |b|, |c|) and ¢’ = max(|a', |b',|c']). In that case Q
and Q' are adjacent and their union is a 26-connected discrete surface iff Q J Q' still hasthe
property of functionality of the individual digital plane patches, which amounts to say that

Page 74



Digitization of Bézier Curves and Surfaces
Summary

H O H' has everywhere a thickness of 1 in the direction Oz and one full side of H and H’ is
contained in their intersection H n H' (see Figure 4-4).

Figure 4-4: Union of the convex hulls of two discrete plane patches

A problem arisesin the case of tensor-product surfaces which may not be planar even though
they verify Theorem 4-3. Thisresultsin the choice of inconsistent normal values between adja-
cent patches that make it difficult to meet the previous connectivity criterion. Such a problem
does not occur with triangles, since triangular patches are aways planar. Hence, one solution is
to divide the tensor-product patches (which are quadrilaterals) into two triangles and work only
with discrete triangles.

2. (a,b,c) and (&', b, c') havedifferent main directions. In the case where (a, b, ¢) and
(a', b, ¢") havedifferent main directionsthe previous condition does not hold anymore and we
canonly guaranteethat Q 0 Q' is26-connected if H n H' contains at |east one of the sides of
HorH and H 0 H' has everywhere athickness of at least 1 with respect to the main directions
of (a,b,c) or(a',b',c).

4.6. Summary

In this section we have presented a method to polygonalize Bézier curves and surfaces into
discrete lines and plane patches. Unlike existing rendering algorithms that all require an arbi-
trary tolerance constamst , our approach is entirely based on the geometry of the manipulated
objects and theorems of discrete geometry. Moreover our termination criterion for the subdivi-
sion of Bézier curves is optimal. The criterion, though presented here in the case of cubic curves
and bicubic surfaces, is general and can be extended to Bézier curves and surfaces of higher
degree. Appropriate connectivity of Bézier curves polygonalized by our method is ensured both
in 2D and 3D and we also provide a criterion to ensure appropriate separability of adjacent dis-
crete surface patches in restricted cases. Further work is needed to determine a more general
solution to this separability problem of 3D patches.

Page 75






5 Multi-Scale Discrete Geometry

This chapter deals with the relations between discrete geometrical objects considered at different

levels of resolution. It tries to answer questions like “what does the equation of a digital line
become when this line is plunged into a lower resolution grid (subgrozap of )" ? What can be
said of a digital parallelogram in the same circumstances ? How are these discrete objects covered
by that grid ?

5.1. Introduction

Studying discrete objectslike digital lines or planes at different levels of resolution isarecur-
ring problem that has been little studied in the literature. And yet asthe second half of thiswork
will show (Section 7.3.4) thereisafundamental need for multi-scale geometry. Indeed applica-
tions that choose to use discrete geometrical objectsinstead of continuous models often need to
work at avery high resolution to ensure acceptable precision. Thisin turn implies manipulating
objects with thousands to billions of pixels. Given the capacities of today’s computers, the only
reasonable way to work with such large structures is to split them into parts. A common way of
doing such a split is to divide the structure spatially into tiles, thereby introducing a new level
of discreteness. Naturally, this new tiled structure needs to be related to the initial discrete
structure.

Establishing a relation between a discrete geometric object at various discreteness scales is
also fundamental from a theoretical point of view: it provides the ground to establish an equiv-
alence between the digitizations at different scales of a continuous object and the continuous
object itself.

5.2. Covering of a naivedigital line by a lower resolution grid

A simple illustration of the multi-scale discreteness problem consists in finding the covering
of a discrete line by a lower resolution grid. 2(a, b, y) be a naive digital line such that
O<a<b andgcd(a, b) =1 . Let us consider the subgradigh, v) = (Ah, uv)  Zof (where
A, W, h, vall are integers). Obviously the fundamental domp@jm) x[0,v)  S(@f, v) and its

_ hOD _[OC . . :
translations by the vecto%D+ YE/D frYOZ induce atilingZgf  where each tile con-
(l

C
tains exactly one point @ (h, v) (for which reason we will refer indifferently to the tile itself
or to the point ofS(h, v) it contains). We are interested in the set of til8&oV) that intersect

D(a, b,y) (Figure 5-1). This set of tiles is naturally a discrete line in the subgsgtpv)
which can thus be described by means of an equation similar to Equation 2-4. We denote this
line with A and call it the covering line & (a, b,y) ®(h, v)
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Figure5-1: A discreteline covered by a lower resolution grid

The discrete line D(7, 12,-12) is represented here with white sguares together with
the euclidean line 7x+ 12y = 0. The gray sguares represent the covering of the
discrete line by thetiling induced by the 2 subgroup (4A, 6p) where (A, u) 0 Z

The tiling generated by S(h, v) on Z?2 induces a new coordinate system where coordinates
(X, Y) arerelated to the canonical coordinates of Z2 by the following obvious relation:

<= [l -

[

which can be inverted as follows:

X = hX+ EFXE
- (52)
y = vy+ %D
v
By definition, D(a, b, y) can be written as
y<ax+by<y+b (5-3)
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Hence the equation of A in the coordinate system related to S writes:

y—a%—xg—b%gs ahX+bvY<y+ b—a%—xg—bgg (5-9)
00 VO o 0

Moreover, from Equation 5-3 stems

- _[a&X=ZY .
v= %] &9
and finally
e Yz
xO . 0O b\qD Ok O D[ by:|D
y-a0-b g———psahX+bvY<y+b-af-0-bF—— (5-6)
ils 5 Y g ils 3 vV o

In order to ssimplify Equation 5-6 let us introduce

Ly O
mx:DF]D
o'
0 1 .
D_[ax VJD (5-7)
-Rg-gL b i
T HE 3 vV g

Considering the fact that m, and m, vary when x steps through Z , Equation 5-6 becomes:

y—max,  z(am, +bm) < ahX+bvY < y+b-min,,(am, +bm) (5-8)

Now to fully determine this equation that defines the covering of the digital line by thetiling,
the exact range of am,+bm,, i.e, the values of min,,(am,+bm) and

max, ; z(am, + bm, ), need to be calculated.
5.2.1. Determination of therange of am, + bm,

By definition in Equation 5-7, it is clear that:

0Os<sm,<h-1

Osmy<v-1 (5-9)
using these bounds in Equation 5-8 suggests for A an equation of the form:
y—a(h-1) —b(v-1) <ahX+bvY<y+b (5-10)
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But since ahX + bvY can only assume values that are multiples of g =gcd(ah, bv), the
bounds of Equation 5-8 can be refined. Denoting pg=ah + bv , this equation becomes

+b+ 0 _
H{a D V}—p[gsahxmws[“g ﬂg if 5‘%’%&0 (5-11)
0 0

O 9 O
or
0 _
@a+b+q—|q:gsahx+ vas[M}g it [Arbryd_ g (5-12)
g O g 0O 9 @O

However since m, and m, arelinked through Equation 5-7, the precise bounds of am, + bmy

when x steps through Z , need to be determined. In fact, we show in what follows, that even
though am, + bmy does not reach the absolute bounds 0 and a(h —1) + b(v—1) in some cases,
Equations 5-11 and 5-12 always hold.

Inverting Equation 5-7 yields
x = kh+m, kOz

y = Iv+m, |10Z (>-13)
hence, thanks to Equation 5-5
a(kh+m)-y|
{T = lv+m, (5-14)
which is equivalent to:
y—kah—lbvsamx+bmy<y—kah—lbv+b (5-15)
kah + |bv has for values the multiples of g = gcd(ah, bv) :
kah+Ibv = —tg tdZz (5-16)
Equation 5-15 can thus be rewritten as
y+tgsamx+bmy<y+tg+b t0z (5-17)

Equation 5-17 describes afamily of digital lines of direction (a, b) parameterizedby t 1 7,
which we denote D, . The intersection of D, with the domain of (m,, my), [0,h) %[O, V),
defines the possible pairs (m,, m,) and therefore the range of possible values for the sum
am, + bmy (see Figure 5-2).
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Figure5-2: Determination of therange of 7m, +9m,

The gray squares represent the family of digital lines defined by
6+21t<7x+9y<6+21t+9 restricted to [0,6)x[0,7) and hence the possible
values of (m,, m,)

L et us denote with (n,, ny) the pair of D, n [0, h) %[0, v) that yields the maximum value
for the sum an, + bn, i.e.

an, +bn, = max., m) 0D, n [0, h) x [0, v)(am, +bm) (5-18)

L et us also denote with &* the difference between am, + bmy evaluated at (h—1,v-1) and
at (ny, ny):

0" = a(h-1) +b(v-1)—(an, +bn,) (5-19)
By construction it is clear that 0 < &* < g, therefore using Equation 5-17 and Equation 5-19
we can write that there exists one value of t [1 Z such that:
O<a(h-1)+b(v-1)-y-tg<g (5-20)
Determining the maximum value of t verifying Equation 5-20 provides a more precise
expression of the upper bound of &*. Equation 5-20 becomes
O<(p-t)g—(atb+y)<g (5-21)

which can be further transformed:
a+b+yviU Oa+b+vyO
- [Rrory

<g (5-22)
g O 0O 9 [0

0
OS[p—t—[
0
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then
fa+b+yd
p-t-[22]+| 759 5 = o (5-23)
—
At this point, we must distinguish two cases according to WE
1. g divides a+ b +y. In this case Equation 5-23 becomes
t = p—[aJ’bJ’ (5-24)
g
Hence &* is bounded by
0s6+Spg—y—a—b—§p—[‘“—g“qu (5-25)

And finally we get 8" = 0 which means that (n,, ny) = (h-1,v-1) and that the lower
bound of Equation 5-12 holds.

2. g doesnot divide a+ b +y. In this case Equation 5-23 becomes

{ = p-[’“b* _1 (5-26)
g
Hence 6* is bounded by
0<dt<g—ArRHYH (5-27)
O 9 O
It follows:
[l
y-a(h-1) +b(v-) <y-(an + bny) <y-a(h-1)+b(v-1) +g- E,h*/g (5-28)
0 0
which is equivalent to:
+b+y10
_pg+y+a+bsy—(anx+bny)s%—p+[a g y}gg (5-29)

showing that the lower bound of Equation 5-11 holds.
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A similar reasoning can be applied with the minimum value of am, + bmy throughout

D, n [0,h)x[0,v) whichshowsthat the upper bounds of Equations 5-11 and 5-12 also hold
in all cases. Those equations can be formulated as a single expression which yields the
following theorem:

Theorem 5-1. The discrete line A of S(h, v) covering the naive digital line D(a, b, y) of
72 isdefined by:

_[W}_G—BSGX+BY<[\%&}+1 (5-30)

where g = gcd(ah, bv), a = ah/gand 3 = bv/g

As an example, let us study the covering of the digital line
D(7,9,6) : 6<7x+9y<15 (5-31)

by the tiling induced by S(6,7). The equation of the covering line A is given by
Equation 5-30:

A 3<2X+3Y<1 (5-32)

which we can seein Figure 5-3.

20
tumtjm
thmqu 104
20 10 thjjt%“bc 10 20
|
101 t‘qggtjm
st
220

Figure5-3: Thecoveringlineof D(7,9, 6) by S(6,7): -3<2X+3Y<1

5.3. Covering of a parallelogram by alow resolution grid

5.3.1. Introduction
We will now present a solution to another problem related to multiple scales of discreteness:

given a digital parallelogram (ABCD) in Z?2, how does one find its covering by a tiling
S(h,v) = (Ah, pv) where A, y, h, v Z (Figure 5-4) ? Thisquestion actually originated from
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DI ey

C

Figure 5-4: Covering of adigital parallelogram by atiling

Gray sguares represent the pixels making up the digital parallelogram (remember our
convention roots pixels at their bottom-left corner, see Section 2.1). Transparent thick
sguares represent the tiles that cover the digital parallelogram.

avery practical concern and the solution presented here finds its way into the digital plane and
surface extraction algorithms introduced in Chapters 7 and 8.

More precisely, let A AD %, C%,CD and D%DD be four integer points, we define the
c

integer parallelogram I (A, B, C, D) asthe set of integer points contained within the euclidean
parallelogram defined by the four points (including the boundary lines) denoted (A, B, C, D) .

This corresponds to the intersection of two thick digital lines which can be formulated as
follows:

nasnXx+ny<np+1

5-33
PASPX+DY<pg+1 (539

(h
where n %ﬁ% isthe vector normal to AB pointing to the interior of the parallelogram, i.e. having

the same orientation asAD, n CAD >0, and pB) Dlsthevector normal to AD also pointing to
YL

theinterior of the parallelogram, i.e. having the same orientationas AB, p CAB > 0. Moreover,
Na = NXa+NYa, Np = NXp +NYp, Po = PXa T PYa ad Pg = PyXg +Pyyg. We aso
suppose the parallelogram is not degenerate, i.e. nNp—ny
Pg—Pa
with the lattice S(h, v).

Since a digital parallelogram is defined as nothing more than the intersection of two digital
lines, the previous method used to determine the covering of aline could also be applied and
extended for this particular situation. However the demonstration is a bit tricky, so we will use
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a different approach here which also illustrates the wealth of possibilities available to solve
problems in discrete geometry.

5.3.2. Morphological dilation

Thisapproach is based on the concept of dilation by a structuring element found in mathemat-
ical morphology, itself issued from Minkowski’s addition [14][50]. This operation is defined as
follows.

Definition 5-1. Let E be a subset & . At each poit Rf , cathecding point, we
define a subses, @®° callsttucturing element. We calldilation of E by the structuring
element B, , the subset dR?

EOB, = {xOR%/B, n Ez 0} (5-34)

That is, for each point @2 , the question “ddigs  touch thEset ?”is asked. The set of
pointsE' for which the answer to this question is positive is the dilatigh of  (Figure 5-5).

Structuring element
Dilated sets

Ve

»

Original sets

Figure 5-5: Dilation by two different centered structuring elements

There is no problem in applying a similar definitionZ8 . Let us then consider as a structur-
ing element a rectangle rooted at its bottom left corRey:, = [X, x+h)x[y,y+V)
R0, 0) corresponds to the fundamental domain of the lafide v) e, B, C, D) be the
result of the dilation of1(A, B,C,D) bR, ,, i#@?
M'(A, B,C,D) = N(A B, CD)ORy, (5-35)
It is clear that the tile af(h,v) associated to the pomty) is identical to the structuring

eIementR(X, y) - Therefore, right from the definition of the dilation operation, it becomes obvi-

ous that the tiles af(h, v) that make up the covering @A, B, C, D) are the tiles associated
with the points of the lattice\h, uv) (A, u0Z) containedlin(A, B, C,D) . Indeed any tile
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of S(h, v) associated with a point outside of ’(A, B, C, D) does not intersect I (A, B, C, D)
while every tile associated with a point inside of IM’'(A, B, C, D) intersects M (A, B, C, D)
(Figure 5-6).

A Yy Original parallelogram

e
S(h, v) 1

h \
Guiding point \ \Y

Structuring element Dilated parallelogram

o

[

\

.
i

i

X
>

Figure 5-6: Dilation and covering of a digital parallelogram

The original digital paralelogram consists of the gray pixels. The dilated
parallelogram consists of the gray pixels and the added brown pixels. The euclidean
boundaries of both digital parallelograms are shown as continuous lines. The covering
of the original parallelogram by the bluetiling is represented by thick transparent blue
squares.

Figure 5-6 suggeststhat aformal algebraic expression of the dilation of M (A, B, C, D) can be
derived as a truncated digital parallelogram (the dashed lines in Figure 5-6 show where this
truncation takes place). To establish this expression, a preliminary result is needed however.
5.3.3. Dilation of an euclidean line by a rectangle

Let D be an euclidean line of rational direction defined by the following equation:

D: ax+hby =y (5-36)

We are interested in determining the equations of its dilation by a rectangle
Rixy) = [x, x+h] x[y,y+V]. Thisdilationisnaturaly astrip, i.e., aregion of R2 contained
between two euclidean lines parallel to D .

Asillustrated by Figure 5-7, two different cases must be distinguished.
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Structuring element

y
A %
a(x—h) +by =y Rowyy | V
&
ax+by =y (xy)
ax+hy =
ax+b(y-v) =y Yoy
X a(x—h) +b(y-v) =y X
> >
(a) aand b have different signs (o) aand b have the same sign

Figure 5-7: Dilation of an euclidean line by a rectangle

1. a, b havedifferent signs. In this case the boundary lines of the dilated region are given by
the two equations:

ax+by = y—ah (5-37)

ax+by = y—bv (5-38)

To order these two bounds a further distinction must be made.
» If a<0 andb >0, the equation of the strip writes:
y—bv<ax+by<y-ah (5-39)
* If a>0 andb <0, the equation of the strip writes:
y—ah<ax+by<y-bv (5-40)

2. a, b have the same sign (or one of thetwo isnull). In this case one the boundary lines of
the dilated region is the line itself while the other one is given by the equation:

ax+by = y—ah—-bv (5-41)

Again, to order the two bounds into a single equation, two cases must be distinguished:
* If a<0 or b<0, the equation of the strip writes:
y<ax+by<y-—ah-bv (5-42)
* If a>0 or b>0, the equation of the strip writes:

y—ah—-bv<ax+by<y (5-43)
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Equations 5-39, 5-40, 5-42 and 5-43 can then be summarized as follows:

y—bv<ax+by<y-ah a<00b>0
y—ah<ax+by<y-bv a>00b<0 (5-44)
y<ax+by<y-ah-bv (a<00b>0)O(a<00b<0)
y—ah—-bv<ax+by<y (a=z00b>0)O(a>00b=0)
By further noticing that
if >
atla g 1la=D (545
2 0 if (a<0)
and that
— i <
a—laf _ %b( if (a<0) (5-46)

2 00 if (a=0)

the Equations 5-44 can be combined together into the following single expression:

Theorem 5-2. The dilation in Z?2 of the euclidean line D: ax+ by = y by a rectangle
Ry = [X, x+h] x[y,y+V] is the set of integer points verifying the following
diophantine inequation:

ah + bv—|ah| —|bv|
2

_ah+bv+|ah| +|bv|
2

<ax+by<sy- (5-47)

5.3.4. Morphological dilation of a digital parallelogram

Thus far we have only considered the dilation of euclidean objects of R2. Now we want to
consider the dilation of a digital parallelogram of Z?2 by a rectangular structuring element
Rixy) 8 defined in section 5.3.2. Transposing the results established previously to this latter

case involves some subtleties.

By definition, the dilation of the digital parallelogram M (A, B, C,D) by Rix.y) in 72,
denoted I’(A, B, C, D), isthe set of integer points (x, y) suchthat M(A, B, C, D) and Rix.y)

share at least one common integer point. (A, B, C,D) is defined by the system of
Equation 5-33 which meansthat it isthe set of integer points contained within the region delim-
ited by four euclidean boundary lines, i.e., the euclidean parallelogram £ (A, B, C, D).

For M(A,B,C,D) and R y) 10 share at least one integer point, #(A, B, C, D) and Rix.y)
must have an overlap of width or height of one at least, in order to ensure that this overlapping
zone contains at least one integer point. Hence I'’(A, B, C, D) isequivalent to the set of integer

points contained in the region delimited by the dilation, in R2, of the euclidean boundaries of
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M(A B, C,D) by a structuring element one unit smaller in x and y than Rix y) which we
denote Ry yy = [X,X+h—=1)x[y,y+v—1) (seeFigure 5-8).

Original continuous

boundary line

Structuring element
_«— of the continuous dilation
of the boundary line

Digital parallelogram

Continuous boundary line
of the dilated parallelogram

M Structuring element of the discrete dilation

Figure 5-8: Discrete vs. continuous dilation

Thus we can define the discrete dilation of (A, B, C, D) by Rix y) by considering the con-
tinuous dilation of P(A, B, C, D) by R yy and applying Theorem 5-2 to each boundary line.
Thisleads to the following equation system:

- +
M+ 8, snX+ny<ng+0;

5-48
EDA+6g,Spr+pyy<pB+6; (>-48)
where
i (h—1) +i(v-1) +iy(h=1)] +|iy(v—l)|
- =

| | 2 | i=np (549

. |X(h—1)+|y(v—l)—||x(h—1)|—||y(v—1)|

of = - > +1

The set defined by Equation 5-48 is actually larger than ’(A, B, C, D) (see Figure 5-6).
Indeed, given the considered structuring element and by definition of the dilation operation,
M(A B,C,D) must be entiredly contained in a rectangular area defined by

(Xmin - h’ Xmax] X (ymin -V, ymax] where

Xmin = MiN(Xa, Xg, X Xp)

Xmax = mgx(xA, Xg» Xcr Xp) (5-50)
Ymin = Min(Ya Ya: Yo Yp)

Ymax = Max(Ya Yg: Yo Yp)
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Therefore Equation 5-48 needs to be refined with the following additional conditionsin order
to yield the equation system defining precisely INM’(A, B, C,D) = M(A,B,C,D) [ Rixy):

%hA+6;]snXx+ ny <np +3;
Ep,ﬁ O, S P X+ Py <pg+ O

|_|’(A, B, C, D)Z (5-51)
U Xmin_h<xsxmax
E Xmin_V<ySXmax

By further scaling these equations by (h, v), we obtain a system that can be solved by the
method exposed in Section 2.5.1.

Theorem 5-3. The covering of the parallelogram N (A, B, C, D) by thetiling S(h, v) isthe
set of tiles of coordinates (X, y) (inthe coordinates system associated to S(h, v)) verifying:

H1A+ 8, < nyhx+nyvy <np + 5
Opa + 0, < pehx + pyvy < pg + 87
Xmin_h <hxs Xmax
Ymin =V <VY'S Ymax

(5-52)

[

where 87, 87, 8, 87, Xmins Xmaxs Ymin: Ymax @re defined in Equations 5-49 and 5-50.

Asan example, let us consider the parallelogram defined by the following 4 points, AE}_llOZE’

BEI&S% CEBSOE D%E equivalently defined by the following equation system:

(1226 < 8x— 13y < 79

0 (5-53)
-164< 10x+ 19y < 1

The covering of this paralelogram in S(6, 7) is given by Theorem 5-3 which writesin this
case:

5—266 < 48x—91y< 135
[94< 60x + 133y < 353
-16< 6x< 20
-31<7y<30

(5-54)

|
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Summary
The first two equations can be rewritten according to the method of Section 2.5.1:
B—266D< 01 0 ED(E< [135] g
H-04= G4687 1184410~ 53 (559

. . . . . xO [&36 91IXxO | ,
Solving this equation and applying theidentity 0 0= 0O [T],0, yields the solution:
yOo 19 4810

X [-235-230 |-187 |-182 |-139 |-134 |-91 |-48 |-43 |0 5 48 |53 |96
Y |-93 |-91 |-74 |-72 |-55 |-53 |-36 |-19 |-17 |O 2 19 (21 |38
x (<3 (-1 [-2 |0 -1 |1 0 -1 |1 0 2 1 3 2
y |1 2 1 2 1 2 1 0 1 0 1 0 1 0

where one can notice that the (—3, 1) solution (grayed out in the table) is not compatible with
the two other equations in Equation 5-54:

}2<x<3
%4sys4
soitisdiscarded. Thefinal result isillustrated in Figure 5-9.

(5-56)

204

Ef] 10 o

Figure5-9: Covering of adigital parallelogram by a lower resolution grid

The parallelogram defined in Equation 5-53 is shown here with its covering by the
tiling S(6, 7)

5.4. Summary
In this section we have illustrated by means of two different examples some problems pre-

sented by multi-scal e discrete geometry, i.e., what happenswhen discrete objects are considered
with respect to rectangular subgroups of Z?2 instead of Z2 itself. Such subgroups define tessel-
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lations of the plane by rectangular tiles. Our primary concern was to determine the coverings of
discrete objects by such tilings. Using two different approaches, one direct, based on the alge-
braic equation of a naive straight line and the second one geometric, based on the concept of
morphological dilation, we established the equations defining these coverings exactly for digital
lines and digital parallelograms. This latter result finds a direct concrete application in the dig-
ital plane extraction algorithm presented in Chapter 8.
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Introduction
Medical imaging techniques and challenges

6 | ntroduction

6.1. Medical imaging techniques and challenges

Medical imaging techniques play an ever increasing role in patient care. Since the first medi-
cal use of X-rays at the beginning of this century, physicians have investigated a wide variety
of physical processes to image the human body, some of them are of routine use for diagnosis
today: magnetic resonanceimaging (MRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT) ultrasound imaging (echography) and naturally X-
rays which remain the most commonly used modality.

X-ray radiography X-ray CT MRI
Coronal view of the thorax Axial view of the thorax Coronal view of the thorax

Figure 6-1: Sample medical images

But the real revolution was the introduction of Computed Tomography (CT) in the 70’s [10].

Initially based on X-rays, CT is nowadays a technique involved in most of other imaging modal-
ities (even though the term CT itself is often used as a shorthand for X-ray CT). Indeed a
conventional radiography offers a projection of the absorption of a flux of X-rays by a region
of the body, i.e., the image is the result of the cumulative absorption of rays by all the tissues
traversed by the X-ray beam. On such an image the absorption of a single organ or tissue can
not be estimated. CT on the other hand, brings the possibility to get a view of the individual
absorption at every point of a thin slice of the examined region. This view is actually obtained
by computation (hence the name computed tomography) and not by direct imaging. CT uses not
one, but a series of radiographies taken at regular intervals around the region to examine
(Figure 6-2). Thanks to the inverse Radon transform (backprojection), those individual projec-
tions are combined together to calculate the individual absorption at every point of the examined
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Figure 6-2: Principle of an X-ray CT scanner

dlicethus providing adetailed image whose contrast depends on the variations of X-ray absorp-
tion by the body cells at every point of the dlice.

Thus CT has opened the doors of hospitals to computers and nowadays all but afew medical
images are in fact computer calculated images that are printed on film afterwards. Facilities
offered by computer storage and archiving also contribute to this trend, and even the traditional
X-ray radiographies will probably be replaced by a digital equivalent in the near future. The
images produced today by the vast majority of medical imaging modalities (X-ray CT, MRI,
SPECT...) are series of bi-dimensional digital images which are fed into computers for further
exploitation. Stacking these 2D images forms a three-dimensional image of the examined
region. Computer imaging techniques are then used to present physicians with selected views
of the data. There exist essentially two main different ways to display 3D medical data[9, 18,
52]. Surface rendering was developed first and was very popular in the 70’s and 80’s. The cur-
rent trend, however, seems to be more in faveohime rendering.

Surface rendering aims at reducing the amount of data to process by deriving a lower dimen-
sional representation of an isolated surface of an object of interest. This intermediate
representation is generally a mesh of triangles but can also be made of a set of voxels or surfaces
of voxels belonging to the surface of interest. Three-dimensional views of the surface can then
be rendered very fast, sometimes using hardware acceleration. One of the major drawbacks of
this approach is that the whole original volume must be reprocessed whenever a new organ or
region of interest is selected.

On the other hand, volume rendering uses the original 3D volume directly thereby avoiding
the volume reprocessing penalty [40]. However, volume rendering requires huge computing
resources since it manipulates much more data than surface rendering algorithms. As computer
power increases and the implementations of the algorithm become more efficient, the simpler
concept of volume rendering and its higher quality images become more and more appealing.
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6.2. High-performance visualization of planes and surfaces

As the resolution of acquisition devices increases, the amount of data acquired in a single
examination becomes huge. Processing such volumes of information traditionally requires
expensive parallel computer hardware. In the past, medical imaging has required mainframe
computers or high-end workstations with multiple CPUs in order to achieve reasonable compu-
tation times. Several special purpose multiprocessor architectures and hardware based
algorithm implementations have even been developed [52]. For these reasons, physicians used
to content themselves with the sole 2D views and have become experts in the process of men-
tally reconstructing the actual volume from these images. Recent interviews with doctors have
shown that most of them still feel more comfortable with two-dimensiona views and have dif-
ficulties in manipulating and extracting relevant information from volumic images. 3D
visualization, though spectacular, remains of limited medical interest. Thus, slicing, i.e. extract-
ing a plane having any desired position and orientation from the acquired 3D volume remains
the tool of choice in routine diagnosis and treatment.

These considerations and the contacts established with Professor O. Ratibe, Dr. L. Bidaut and
Dr. R. Welz at the University Hospital of Geneva guided the design of the medical visualization
applications that are presented in the following sections. Within thisthesis, the DigiPlan library
was developed for the extraction of slices of arbitrary orientation out of 3D biomedical acqui-
sitions (CT, MRI). However, this type of view rapidly appears somewhat limited since rather
few of the structures in the human body are planar. Often one would like to get aview like a
dlice taken throughout the whole length of the vertebral column or the jaw for instance. Thisled
to the development of DigiSurf, alibrary that generalizes DigiPlan and generatesaflat 2D view
of ruled surfaces extracted from 3D medical image volumes.

The high resolution of medical scansisalso synonym of high computer storage space require-
ments. Until recently, the only viable means of exchange of images between physicians was
film. With the expansion of CD-ROM usage however, this situation is changing. Patients car-
rying their own examination images on CD-ROM from the clinic to their MD isan option being
considered. Besides, thanks to the Internet, doctors can now download the images of their
patients from the radiology center down to their own office for local examination or even
browse them on-line. Telemedicineis a hot research topic and will certainly become aredlity in
the forthcoming years. physicians will be able to have virtual meetings with colleagues,
exchange images of patients, have their diagnostic confirmed by distant specialists, etc... All
this implies that modern medical visualization software must be highly scalable in order to be
able to run on the low-end PC that can be found in medical practices aswell as on the powerful
Internet imaging servers located in hospitals and clinics.

Fortunately the increase in performance of commodity hardware such as Pentium-based PCs
aswell asthe possibility of connecting arrays of disks through SCSI channels enables building
much cheaper interactive 3D image storage and visualization devices. Striping the image onto
aset of disks and reading from them in parallel offers an aggregate bandwidth compatible with
the requirements of medical imaging. Furthermore, several PCs can be connected through com-
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modity network hardware such as Ethernet or Fast-Ethernet and provide increased computing
power for algorithms designed to run in parallel.

On the software side, visualization algorithms designed for such systems need to be able to
run in parallel on multiple CPUs and achieve high efficiency in order not to choke when they
are fed tens of megabytes of data per second read in parallel from the disks.

Unlike RISC processors that achieve great performance dealing with floating-point numbers,
CPUs of the x86 family which form the core of PCs today, are processors largely intended for
integer computation. MM X technology has even reinforced this trend. MMX (MultiMedia
eXtensions), a technology developed by Intel, adds new instructions to the traditional x86
instruction set, especialy targeted at signal processing. These instructions, inspired from the
DSPs (Digital Signal Processors), use the floating-point registers of the x86 CPU in order to
save chip space and to be able to process several integer operandsin parallel. Switching contexts
between MMX and floating-point register usage imposes a great penalty in terms of CPU
cycles. Therefore, such an architecture clearly favors the choice of pure integer arithmetic.

Moreover 3D volumetric datasets produced by medical imaging modalities areinherently dis-
crete, made of voxels. Mapping continuous models on such discrete spaces, though apparently
simple, actually introduces several difficulties and inconsistencies. Discrete geometry, asit has
been shown in the first half of thiswork, takes advantage of the discrete nature of such objects,
considering them for what they are, working directly on them and not on a continuous pseudo-
equivalent. This approach has incomparable advantages like consistency and efficiency which
allow to derive numerically stable algorithms well suited for parallelization. These aspects
make discrete geometry appear like the tool of choice in the design of biomedical visualization
algorithms. Through the following application examples we will thus show that discrete geom-
etry, far from being a pure abstraction, is also strongly rooted in concrete problems and that
many theoretical results developed previously find direct applications.

6.3. The CAP/PS par allelization framewor k

To achieve the best performance on amulti-PC multi-disk architecture, an algorithm needsto
avoid data transfer overheads and must hide disk latency by pipelining the asynchronous disk
accesses and the actual computation. Indeed, it is remarkable that even simple PCs, thanks to
technologieslike SCSI and DMA, can perform disk read/write operations in parallel with com-
putation since the main processor is not used for data transfers between storage peripherals and
memory. Developing paralel 1/0 intensive applications taking advantage of this fact and
involving multiple processes running on different processors represents a very tedious effort.
One needs to define and implement application-specific protocolsin order to exchange param-
eters and data between different processors that do not share a common memory space.
Furthermore, debugging parallel applications and ensuring they are deadlock-free remains a
very difficult task. Ensuring that the program is portable from one parallel architecture to
another and that it scales well introduces yet another constraint.
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In order to facilitate the development of parallel applications, the Peripheral Systems Labora-
tory at EPFL (Dr. B. Gennart, and Dr. V. Messerli under the direction of Prof. R.D. Hersch) has
developed the CAP/PS? (Parallel Storage and Processing System) parallelization framework
[43]. This system targets architectures such as described above, consisting of a number of stor-
age and processing nodes (per node: a processor connected to several disks) and a client node
(a processor with an attached display). The client node and the storage/processing nodes are
interconnected by a Fast Ethernet LAN (100 Mb/s) (Figure 6-3).

PC Computer

Client Node

Storage and |
Processing Node
L

Figure 6-3: Hardwar e ar chitecture tar geted by the PS? par allelization framework

The core of the CAP/PS? framework comprises:

* a high-performance parallel file system built on top of the native MS Windows NT file
system (NTFS) running on each node. This parallel file system declusters large files
into sub-files that reside in the different storage and processing nodes and provides all
the necessary primitives to access these subfiles;

» the CAP (Computer-Aided Parallelization) extension to C++ which enables application
programmers to specify at a high-level of abstraction the flow of data between
pipelined-parallel operations ensuring that the resulting program is deadlock-free,
portable and appropriately combines parallel storage access routines and image
processing operations [27, 28].
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The DigiPlan and DigiSurf libraries were developed using this framework and thus take full
advantage of the possibilitiesit offers:

1) Striping among several disks enables handling images of arbitrary size with optimum
performance as datais fetched in parallel from the disks

2) Applications are scalable since they are able to run on platforms ranging from the
simple mono-processor to a multiprocessor shared-memory system and up to a cluster
of networked computers
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This chapter presents an algorithm for extracting planar slices of arbitrary orientation from a 3D
voxel-based volume. Discrete geometry is shown to be well-suited for this application. It simpli-
fies the parallelization of the algorithm and contributes to its overall efficiency. A brief summary
of the performance of the algorithm running on various parallel configurations is also presented.
Finally, a concrete Web application using this algorithm for medical imaging is also described.

7.1. Introduction

For years, physicians and radiologists have been used to reading directly the printouts of the
slice images produced by various medical imaging modalities (CT, IRM, etc...). This kind of
dlice seriesis largely used for the education of medicine students and thus young doctors get
familiar very early with the interpretation of this type of two-dimensional views. And though
three-dimensional imaging is now entering medical schools, most physicians still feel more
comfortable with the examination of two-dimensional slice views. Traditionally, medical imag-
ing devices provide three types of orthographic views (axial, sagittal and coronal) which still
make up the basis for most diagnoses.

@

Figure 7-1: Traditional orientations of biomedical sliceimages

(@) Human 3D model, courtesy of Julien Proux; (b) MRI head scan, courtesy of
University Hospital of Lausanne (CHUV)
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Thislimited set of orientations is convenient since it always offers the same viewpoint, mak-
ing it ssimpler for the physicians to recognize precisely which anatomical structure they are
watching and aso giving them a solid basis for comparison between similar shots, say, an
healthy organ and a pathology of this organ or shots of the same anatomical region taken at dif-
ferent times.

Orthographic views are sometimes too restrictive and breaking this limitation on orientation
to offer arbitrary oblique viewsis anatural extension. Rhodes et al. [47] provide specific exam-
pleswhere oblique views are necessary to diagnose particular conditions such as orbital masses
or meningiomain the optic sheath. By construction however, most acquisition devices can only
provide views in the three main orthographic directions. Therefore oblique views need to be
obtained by computer reconstruction from orthographic dices. Asa preliminary step, the series
of evenly spaced 2D dlice views produced by the acquisition device are stacked onto one another
in order to create avirtual 3D view of the examined region. This 3D volume makes it possible
to reconstruct dices of arbitrary direction.

> voxel

Figure 7-2: Stacking 2D dlicesto create a 3D volume

7.2. Algorithm overview

7.2.1. Objectives and design

The increasing size of the volumetric datasets produced by medical imaging modalities is
bound to become one of the major concerns when designing medical visualization algorithms.
However research in the fields of visualization has traditionally focused on raw computing per-
formance improvements with little attention paid to storage and 1/O issues. A common
assumption is that the hardware has enough main memory to hold the whole image at once and
that this memory is uniformly accessible (shared-memory paradigm) [51]. But these machines
are out of the reach of the general practitioners and can only be afforded by important hospitals
or clinics.
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Taking these considerations into account, we propose here a parallel distributed slicing algo-
rithm based on discrete geometry called DigiPlan. Its advantages over previous
implementations are:

* high-performance thanks to parallelism at two levels: computation and disk access,
which are furthermore pipelined (see Section 7.3);

* the size of the processed images is not limited by the available memory but rather by
disk space;

* pure software implementation with no need for dedicated rendering hardware thereby
ensuring better portability across a wide range of machines

« allows the application to run both on a single-processor PC and a network cluster of
PCs.

Close integration of DigiPlan within the CAPARarallelization framework enabled us to
achieve this goal Such features would have been very difficult to implement, not to say impos-
sible within the available time frame using ad hoc parallelization code. Thus, even though
DigiPlan uses an abstraction layer that makes it more or less independent of the underlying
image library and parallelization substrate, its current implementation is tightly bound to
CAP/PS which largely guided its design.

DigiPlan

Gray boxes
indicate soft-

ImageServer Library warethat makes
use of the CAP

PS2 preprocessor
CAP Library
LSP Foundation Library LSP Communication Library
NT File System Socket Library
Windows NT Operating System

Figure 7-3: Integration of DigiPlan within the CAP/PS? framework

Figure 7-3 shows the overall design of the integration of the DigiPlan library within the
CAP/PS framework.

At the bottom, the Windows NT operating system is insulated from the above layers by two
libraries: theLSP Foundation Library and theLSP Communication Library which provide
respectively basic data structures, memory pool allocation routines and OS independent inter-
process communication primitives.
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The CAP Library, which standsfor Computer Aided Parallelization Library, providesthe nec-
essary functions to implement the features of the CAP language, i.e. sequencing of operations,
thread/process management and synchronization, inter-address-space message-passing, €tc...
The PS system together with the CAP Library upon which it depends, constitute the core of the
CAP/PS? framework.

PS? offers the necessary primitives to access striped files distributed over a cluster of net-
worked machines each having several disks attached (see Figure 6-3). A PS?fileis divided into
aseries of atomically addressable chunks called extents. PS? is perfectly general and makes no
assumption on the nature of the files it handles, thus it does neither determine the size of the
extents nor their distribution on the disks, both of which are application-dependent parameters.
On the other hand, on each disk, it stores the extents belonging to the same striped file into a
singleNTFSfile. It also provides open/close primitives at the striped file level and exports com-
putation threads into which custom operations can be plugged, thus ensuring a very tight
combination of disk access and computation operations [44].

The ImageServer Library completes PS? by offering primitives dedicated to the handling 2D
and 3D images. ImageServer image files are PS? files and thus are divided into extents. 2D
image extents are actually rectangular subtiles of the original image, while 3D image extentsare
rectangular parallelepipedic subvolumes of the original image (Figure 7-4).

/ 7
// // /|
// // /
/] {
A
N
T T T T T T /
A
A
//
- / 3D extent
///
2D extent [ /
. J A
pixel  visualization o
window Vox
2D Image 3D Image

Figure 7-4: 2D and 3D Image Extent Partitioning

Considering that image access patterns to large 2D or 3D images generally consist of contig-
uous regions (visualization windows), extent based image access when combined with an
appropriate distribution of the extents onto the disks has been shown to be very efficient [31,
26]. Indeed, storing alarge 2D image scanline by scanline or alarge 3D image plane by plane
results in poor access times when a small contiguous portion must be visualized since much
more data than necessary needs to be read from the disks. Partitioning a large image into rect-
angular (resp. parallelepipedic) extents greatly improves access times for this type of
visualization requests.
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The extent size in pixels and hence its overal size in bytes is an important factor of perfor-
mance: too small an extent increases the overhead due to accessing extents and to disk latency,
too large an extent increases the amount of data to be fetched to visualize a given window. In
practice the extent size should be kept between 12 and 48 KBytes [31]. The extent dimensions
are specified by the user at image creation time (or when images are converted to the
ImageServer’s format).

Extent distribution is what ultimately balances the load of the visualization system. A good
distribution must ensure that for any visualization request, the affected extents are distributed
onto as many disks as possible. This task is handled by the ImageServer library and is achieved
by introducing, between two successive rows of extents and between two successive planes of
extents, offsets which are prime to the number of disks.

Finally, theDigiPlan library sits on top of all these layers. It uses the ImageServer library to
open/close the 3D image files and query their geometric and storage parameters (image size,
extent size, number of bytes per pixel, etc...) Then it uses directly {extest reading prim-
itive in order to achieve maximal performancextént read/write are the fundamental
operations, hence the fastest I/O operations in the CAR/d&8ework).

7.2.2. Discrete plane scanning algorithm

Extracting oblique slices from 3D volumetric data is a problem that has focused some atten-
tion in the past and for which several methods have been proposed. The earliest as cited in [47]
used a very cumbersome approach consisting in transforming the entire 3D volume according
to the oblique direction to make it perpendicular to the viewer. Pixels were then removed in
front of and behind the plane of interest. This, of course, requires large amounts of processing
time and is very inappropriate as the computation time of such an algorithm is a linear function
of the 3D volume size when it should be a function of the size of the 2D plane part to display.

Other intuitive approaches consist in direct computation of the final slice pixels using some
form of floating-point interpolation (generally tri-linear) of the voxel values in the 3D
dataset [45]. But tri-linear floating-point interpolations are a costly operation which makes han-
dling large images awkward on small computer systems. Hardware implementations in the form
of 3D texture mapping engines exist [25], especially from Silicon Graphics (SGI), but this class
of hardware remains expensive and though a de facto standard like OpenGL ensures application
portability, existing implementations perform poorly on low-end non-hardware accelerated
systems.

More original approaches, such as operations in the Fourier domain have also been proposed
[37]. Though conceptually interesting, the necessity of going back and forth between the image
and frequency domains makes such a method computationally expensive and thereby inade-
guate to process large images fast.
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Rhodes et al. [47] presented a particularly innovative method at the time it was devel oped,
which tried to draw some benefits from the discrete nature of the volumetric dataset produced
by X-ray CT scanners. That method could still be deemed interesting today if it was not built on
so shaky theoretical foundations. Neverthelessit formed the ground for subsequent approaches
based on discrete geometry, including ours. The development apparently proceeded directly
from the need to avoid artifactsin the views of oblique planes and could not berooted in discrete
geometry methods that were developed later. Thusthe surfaces that were extracted by that algo-
rithm were rather coarse approximations of euclidean planes by discrete sets of voxels that do
not fit the current definition of digital planes.

In order to take full advantage of the discrete nature of the 3D datasets generated by medical
acquisition devices, we propose an original approach based on discrete geometry. Itsadvantages
over previous methods reside in its high efficiency and numerical stability thanks to the use of
integer arithmetic, as well as its rigorous geometrical foundation which guarantees images of
good quality and makes the parall€elization of the algorithm easier.

As shown in Section 2.3, rationa euclidean planes have a digital 18-connected counterpart
called naive digital planes defined by an equation of the form:

P(ab,cy) = {(xy,2) 0Z°/y<ax+by+cz<y+max(a, b, |c|)} (7-1)

P(a, b, c,y) represents the digitization by the closest integer point of the euclidean plane
max(|al, |bl, ICI)}
> :

ax+by+cz = y+[

Now without loss of generality, let us suppose that all three coordinates a, b, ¢ are positive
and that the main direction of thenormal to P isz,i.e,, ¢ = max(a, b, ¢) . Inequality 7-1 leads
to the following equality :

;= {%ﬂ (7-2)

which shows that a naive digital plane defines amap from Z2 onto Z . The voxels belonging
to the digital plane can therefore be determined with a double loop in x and y. Additionally
z(x+1,y) and z(x, y+1) can be expressed incrementally with respect to z(x, y) . With the
notation

Lax + by —yO
————10

7-3
T L (7-3)

rex,y) =
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and thanks to the following equation

Eb% N De%
a+el  ral re %D %D (7-4)
- = |2+ +|—
Rl
we can evaluatez(x + 1, y):
(gl
r(x,y) + =0
(7-5)
_ a1 +by-y] _ o ra]_ >0
2(x+1,y) = [ c VJ = z(xy) [CJ c
L et us distinguish two cases:
» a<c, Equation 7-5 becomes
2(x+1,y) = 2(x y) - [XA 2] (7-6)
* a = c, then Equation 7-5 becomes
2(x+1,y) = 2xy) | | = 2xy) -1 (7-7)
Additionally
rxe,y) = g2 (7-8)
(l (l

Considering that a similar evaluationzgk, y+1) is also possible, Equations 7-6, 7-7 and 7-8
are synthesized in the algorithm of Figure 7-5. This algorithm uses integer arithmetic only and
has a very tight loop core which can easily fit into the primary level cache of the processor.

7.2.3. Final backward mapping and the zooming extension

Slicing through the volume actually means extracting a rectangle, eelledzation rectan-
gle (Figure 7-6) from the volume and displaying it on the screen.The geometric specification of
a visualization rectangle consists of five parameters defined in the absolute coordinate system
(see Figure 7-13) : itsormal, as an integer vector denotedwhich defines the viewing direc-
tion, thecenter of the visualization rectangle within the 3D dataset as an euclidean point (real),
denotedQ , a second integer vector catlean, denotedd, orthogonal to the normal, which
defines the up/down orientation of the rectangle display on the screen and finally two integers,
width andheight which define the size of the visualization rectangle.
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zy -Di v(a*xm n+b*yni n- ganmg, c) Integer division
ry Renm( a*xm n+b*ym n- gamrg, ¢) Integer remainder
for y=ymin to y=ynax do
z =zy
r=ry
for x=xmin to x=xmax
Get Val ueof Voxel At (X, Y, z)
r =r+a
if r>=c then
r =r-c
z = z-1
endi f
endf or x
ry = ry+b
if ry>=c then
ry ry-c
zy zy-1
endi f
endfor y

Figure 7-5: Naive discrete plane scanning pseudo-code

V4
Slice Plane

Visualization rectangle

X’/ Projection plane
SO T LT T
A~ Projection of the rectangle

Figure 7-6: Extracting an oblique slice from a 3D voxel dataset

Scanning the plane supporting the visualization rectangl e using the previous algorithm creates
a 2D projection image that is not suitable for direct display on screen since selected voxels are
inthe original volume 3D grid. Figure 7-7 summarizes the geometry of the scene and the matrix
M that maps from the screen space onto the projection space in the case the main direction of
thenormal, n, is ¢, i.e. ¢ = max(|al, |b|, |c]).

A final backward mapping transforms the intermediate rectangle projection into the final
screen view. It operatesin adoubleloop on the screen space applying the matrix M to determine
the coordinates of the corresponding points in the projection space. The displacements in the
projection space corresponding to a unit step in the x and y directions in the screen space are
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Figure 7-7: Geometry of the projection scene

derived from the columns of M. In general, these displacements are irrational but can be
approximated by rationals with an arbitrary precision. Therefore, the double loop can be per-
formed incrementally using integer arithmetic with no loss of precision. Note also that this step
isa 2D resampling, not to be mistaken with the computationally much more intensive direct tri-
linear volume resampling used by other slicing methods. Furthermore, for maximum efficiency
we use nearest neighbor interpolation at this point, though bilinear interpolation could naturally
also be used. In the case of very high resolution images like the Visible Human, the difference
Is perceptually negligible in most situations and does not justify the computation increase.

This last resampling step is not a heavy penalty, first because it isa 2D operation that can be
optimized more easily than tri-linear interpolation and secondly because one can make the most
of it by using it to scale the displayed image. Indeed, introducing a multiplicative coefficient in
the resampling matrix coefficients provides a convenient means of applying a zoom factor,
thereby alowing the display of downscaled slices at no extracost. Thisis particularly useful to
produce global views of very large datasets like the Visible Human (Section 7.5).

7.3. Parallelization consider ations

7.3.1. Design

Now considering that the volumetric dataset is partitioned into extents distributed over several
disks, aparallel version of the dlicing algorithm requiresthe following operations. (1) determine
the extents intersecting the visualization rectangle, (2) read these extents from the disks, (3)
extract the digital plane part contained in each extent and resample it for screen display, (4)
merge the individual resampled plane parts into the final screen display buffer.
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Figure 7-8: Graphical flow-chart of the parallel dicing algorithm

Asillustrated in Figure 7-8, these elementary operations can be both pipelined and carried out
in parallel. Pipelining can be achieved at three levels:

« a digital plane part can be extracted and resampled while the next one is being read
from the disk

» a resampled plane part can be merged into the display screen buffer while the next one
is being extracted and resampled

« a full visualization rectangle is displayed while the next one is being extracted, in case a
request for browsing several slices into the volume is made

Parallelism can be achieved at two levels:

* several extents can be fetched simultaneously from the disks. Thus, increasing the
number of disks provides an increased aggregate I/O throughput

« digital plane parts can be extracted from several extents at the same time if several
processors are available. Thus, increasing the number of computation slave nodes
increases the overall performance of the extraction and resampling computations.

The individual operations (1), (2), (3) and (4) are purely sequential operations, only their
arrangement shown in Figure 7-8 introduces parallelism and pipelining. Transcribing such a
graphical flow chart into working code is the purpose of the CAP extension to C++ which was
used to implement the parallel slicing algorithm. Figure 7-9 shows the corresponding CAP
pseudo-code (for the sake of clarity the syntax has actually been slightly simplified). From this
very short synthetic description, the CAP preprocessor generates all the necessary code to create
the appropriate processes and threads, to schedule the individual operations, and to exchange
data between threads possibly located in different address-spaces (when running in a multi-PC
environment).
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i nt Conput el ntersect edExt ent s(Pl aneExtracti onPar anet er s* paraneters,
Ext ent ReadRequest * request)
{ /I C++ code }

voi d MergePl aneParts(Pl ane* screenBuffer, PlanePart* planePart)
{ /I C++ code }

| eaf operation PlanePartExtraction
in Ext ent* extent
out Pl anePart* pl anePart

{ /I C++ code }

operation Ps2Server:: Pl aneExtraction
in Pl aneExt racti onPar aneters paraneters
out Pl ane pl ane
{
paral l el while (ConputelntersectedExtents,
Mer gePl aneParts, Cient, Plane plane)
(
Ext ent Server [t hi sTokenP->Ext ent Ser ver | ndex] . ReadExt ent
>->
Conput eSer ver [ t hi sTokenP- >Ext ent Ser ver | ndex*
NB_OF_NODES/ NB_OF_DI SKS] . Pl anePar t Ext racti on

Figure 7-9: CAP pseudo-code of the parallel dicing algorithm (1st variation)
7.3.2. Expected gains

The dlicing algorithm is particularly well suited for parallelization, indeed there is no data
dependency between the computations made on each extent. Thus each storage and processing
node can work independently on its set of extents without needing to exchange information with
the other nodes. This greatly simplifies the design of the parallel algorithm and reduces the
amount of communications which guarantees a very good parallelization speedup. Actual per-
formance measurements show that the speedup is linear from one to five computation nodes
loaded with 12 SCSI disks (Section 7.4).

7.3.3. Possible Variations

In the proposed configuration (Figure 6-3), the network appears as the only resource whichis
not easily scalable. Indeed both the 1/0 and computation throughput can be improved by
increasing respectively the number of disks attached to the slave nodes and the number of pro-
cessors per node or the total number of nodes. On the other hand, increasing the network
bandwidth can only be done by either switching to another technology (and there is no other
technology offering more than 100 Mb/s in the same price range as Fast-Ethernet today) by
changing the network topology (subnets) or by introducing an expensive high-speed crossbar
switch.

Under those circumstances, particular attention must be paid to the total volume of data that
travels across the network. Two variations of the parallelization have thus been considered.
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1. Thedetermination of the extentsintersecting the desired dice (hit extents) isper-
formed on the master. This simpler variation corresponds to Figure 7-9. It ensures that the hit
extents are computed only once for each extracted slice. This computation is performed on the
master node which sendsto the slave nodes through the network the individual extent extraction
and resampling requests.

2. Thedetermination of the hit extentsis performed on the dlaves. In this configuration
only the geometric specification of the visualization rectangle travel s through the network from
the master nodeto the slaves. Then each slaveitself computesthe hit extents and processesthose
that are locally stored. This variation minimizes the network traffic at the expense of additional
computation, since the same determination of the hit extents is performed on each slave when
it could have been done only once on the master.

int DuplicateParaneters(Pl aneExtracti onParaneters* paraneters,
NodeLocal Pl aneExtracti onPar anet er s* copy)
{ /I C++ code }

i nt Conput eLocal I nt ersect edExt ent s( NodeLocal Pl aneExtracti onPar anet ers* paraneters,
Ext ent ReadRequest * request)
{ /IC++ code
/I Compute the extents that intersect the visualization rectangle and that are stored on the current node

}

voi d MergePl aneParts(Pl ane* screenBuffer, PlanePart* planePart)
{ /I C++ code }

| eaf operation PlanePartExtraction
in Extent* extent
out Pl anePart* pl anePart

{ /I C++ code }

operation Ps2Server:: Pl aneExtraction
in Pl aneExt racti onPar anet ers paraneters
out Pl ane pl ane

i ndexed (int nodel ndex=0; nodel ndex<NB_OF_NCDES; nodel ndex++)
paral | el (DuplicateParanmeters, MergePlaneParts, Cient, Plane plane)
(
paral | el while (ConputeLocallntersectedExtents,
Mer gePl aneParts, Cient, Plane plane)
(
Ext ent Server [t hi sTokenP- >Ext ent Ser ver | ndex] . ReadExt ent
>->
Conput eSer ver [ t hi sTokenP- >Ext ent Ser ver | ndex*
NB_OF_NODES/ NB_COF_DI SKS] . Pl anePar t Extracti on

Figure 7-10: CAP pseudo-code of the parallel dlicing algorithm (2nd variation)
Experiments have shown that the network throughput is the first bottleneck when the number

of processing nodes increases. The overall system istherefore much better balanced in the sec-
ond variation.
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Note that switching from one parallelization strategy to the other is just a matter of changing
afew lines of the CAP parallel code as shown in Figure 7-9 and Figure 7-10.

7.3.4. Deter mination of the hit extents

The determination of the extents hit by the visualization rectangle uses results in discrete
geometry that were developed in thefirst half of thiswork, namely the covering of adigital par-
allelogram by alow resolution grid (Section 5.3). Indeed the projection of the extent grid on the
projection plane forms a tessellation of that plane by rectangular tiles. The agorithm of
Section 5.3 alowsto find very efficiently the tiles that cover the projection of the visualization
rectangle which isaparallelogram in the general case. The set of tiles that intersect the parallel-
ogram is nothing more than the projection of the extents hit by the visualization rectangle.
(Figure 7-11).

V4
Hit extents
P
y
|
X Projection plane
77 7 7
/7 A /
Z VARV 4
\\// /
L /%/ Projection of the hit extents

Figure 7-11: Determining the extents hit by the visualization rectangle

Knowing the projection of the hit extents and the equation of the plane supporting the visual-
ization rectangle, one can determine the elevations of the hit extents. Depending on the extent
dimensions, it ispossiblefor the extraction rectangle to intersect two or more vertically adjacent
extents. Therefore, for each projection of an intersected extent, the algorithm eval uates the min-
imum and maximum elevations of the dicing plane above. Since the planeisalinear geometric
object, the process can be optimized by noticing that the extremal values of the elevation are
reached above two of the four corners of the extent projection and that those corners are the
same for all the extent projections.
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(all
Let us consider a visualization rectangle lying on aplane of normal n = %E where c>0 is

CfO
the biggest coordinate in absolute value. In this case the projection planeis the plane containing

the x and y axes. Figure 7-12 summarizes where the corners of minimum/maximum elevation
are situated on the extent projections according to the valuesof a and b.

| X @ | X | X v X
¢ O
vy Vy vy Vy
a=0 a=0 a<o a<o0
b<O b=0 b<O b>0

@) Point of maximum elevation

Point of minimum elevation

Figure 7-12: Cornersof max/min elevation on the extent grid projection

Moreover, much in the same way as elevations of adjacent voxels can be computed incremen-
tally in the naive digital plane scanning algorithm, the min/max elevations on extent projection
boundaries can also be calculated incrementally. Therefore the determination of the hit extents
Isa pure discrete problem solved with a pure integer arithmetic algorithm.

7.3.5. Non-isometric volumes

Due to technical constraints, biomedical 3D images often are anisotropic, i.e., the resolution
of the acquisition along the three axes is not identical. Thus the pixel size on each of the 2D
slices making up the 3D dataset may be smaller than the distance between two consecutive
dlices. For instance, the Visible Human Male dataset scanned by the U.S. National Library of
Medicine, Bethesda, has a resolution of one third of a millimeter on each slice while the slices
are spaced at aone millimeter interval.

Thisis undesirable since most visualization algorithms, including ours, require the voxelsto
have the same size along the three main directions. Therefore medical image visualization often
includes a preprocessing step of thewhole 3D dataset consisting in the interpolation of the miss-
ing voxelsin order to build an isotropic dataset having the same resolution along the three main
axes [52]. Sophisticated methods for interpolating the missing slices have been developed. For
instance Ruprecht and Mduller proposed a method inspired from morphing techniques where
each slice is deformed into the next one [49]. However if the slice/inter-slice resolution ratio is
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not too high, acomputationally less expensivelinear interpolation between the slices gives good
results and is therefore often preferred.

However doing the interpolation during a preprocessing step, though it ensures each voxel is
interpolated only once, resultsin an artificial image size increase that causes lower overal per-
formance of the visualization system as more data needs to be stored and read from the disks.
Thisis especially true for algorithms like the proposed digital plane scanning algorithm which
ensures each interpolated voxel is accessed at most once.

Therefore we propose a solution where voxels in missing slices are resampled on the fly. This
iIsmade possible by using adouble set of coordinates. Physical coordinatesrelateto theoriginal
3D dataset while virtual (or absolute) coordinates relate to an abstract object representing the
volume as if it had been previously appropriately resampled (Figure 7-13). The digital plane

y

Physical coordinates —_, < 1/} |«a—— Interpolated slices
L >X

‘

Virtual coordinates -

o

[N

Actual slices

N
OCO~NOURAWNEFO
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0123456789
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Figure 7-13: Physical and virtual coordinate systems

A sample 3D dataset where the in-dlice resolution is three times as high as the inter-
slice resolution.

scanning algorithm operates in the virtual coordinate system in the exact same way as if the
whole dataset had been previoudy resampled. Then the pseudo-function
Get Val ueOf Voxel At (Figure 7-5) is simply extended so as to interpolate voxels that do not
actually exist in the volume. For instance, consider the function is asked for the value of voxel

(3,0, 7) inthevolume of Figure 7-13, it Ssmply returns a value interpolated from the voxels of
physical coordinates (3,0, 2) and (3,0, 3).

One additional difficulty arises from partitioning the volume into extents. In some situations,
the voxels needed to interpolate a virtual voxel may reside in different extents. This situation
creates a prejudicial dependency on neighboring extents which can affect overall performance.
Thus in aworst case situation, two layers of extents could be read to recreate a missing dlice
resulting in twice as much data as necessary being read from the disks. To solve this problem,
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we introduce redundancy in the storage format through the creation of so called fat extents. A
fat extent contains as a last layer in the undersampled direction, an additional layer of voxels
which is copy of the first layer of the next adjacent extent in that direction. Figure 7-14 shows

all pal

X X
0 P 0 |
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3 3
: 3 Y- Redundant slices
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9 7
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v zZ void
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Simply partitioned dataset Partitioned dataset
(no fatness) with z-fat extents

Figure 7-14: Volume partitioning using fat extents

how this principlewould be used for avolume needing reconstruction of slicesalong the z-axis.
If resampling is needed in more than one direction, the mechanism can be extended and fatness
layers can be added for up to the three directions x, y and z.

The volume size increase thus created is relatively small. For instance if the extent sizein the
z direction is 32, then using z-fat extents makes the volume 1/32"9 bigger.

7.4. M easured performances

In this section we provide the results of experimental performance measurements made on the
DigiPlan parallel slice extraction application. Naturally, the performance of the overall system
largely depends on the performances of the underlying PS?/CAP parallelization framework and
on thefine-tuning of the parallelization strategy with respect to the available hardware. Detailed
results from this viewpoint can be found in [43] and [44]. Performance figures in this section
are courtesy of Vincent Messerli [44].

The measurements were made on aparallel system consisting of anetwork cluster of 200 MHz
Bi-PentiumPro PCs, 1 client (master) + 1 to 5 server nodes (slaves), connected by a Fast Ether-
net network at 100 Mbits/s. Each of the slave PCs was loaded with up to 4 SCSI-2 strings (3
disks per string) each offering a maximum nominal throughput of 10MBytes/second. The
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experiments consisted in extracting 512x512 24 bit color sices from the Visible Human male

dataset (13 GB).

Figure 7-15 shows that the system scales linearly as well with the number of disksaswith the
number of server nodes.
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Figure 7-15: Scalability across the number of slave PCsand disks

The system reaches its peak performance at 4.8 512x512 color images per second on a con-
figuration consisting of five server nodes and one client. At this point the processors of the
server nodes are loaded at 80% while the client node processor is loaded at nearly 85%
(Figure 7-16). The weak spot of the system seems therefore to reside in the limited processing

@ Compute extents intersecting the [ Network
dlice, extract and project slicepart ~ and system
activities

[dVisudize full image slice

[0 Generate slice extraction requests,

merge dlice partsinto afull slice Il Read 3D extent from disks
100 -
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20 + =
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Server 1 PCwith 12
confiqurations.  disks

Processor utilization [%0]
| | | | | | | |

2PC'seach 3PC'seach 4PC'seach  5PC’'seach
with 12 disks with 12 disks  with 12 disks with 12 disks

Figure 7-16: Master and slave processor utilization
power of the client node which could be attributed to the extraction algorithm, or more precisely
to the merging of the received plane parts into the final display buffer. Actually Figure 7-16

shows that the master node spends 60% of its processing time on network operations and less
than 15% on computation. In fact the bottleneck resides in the limited throughput of the client
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node’s interface to the network. Therefore the most efficient optimization would not come from
an improvement of the merging algorithm but rather from an intelligent network adapter which
could off-load network protocol related operations off the master node’s main @BU (I
technology).

7.5. TheVisible Human Slice Server

The most spectacular application of the DigiPlan library for the extraction of digital planes
from 3D voxel-based volumes is certaiflige Visible Human Sice Server [54]. This web site
(http://visiblehuman. epfl.ch/) which was unveiled to the public in June 1998 has
served nearly 140’000 slice extraction requests in less than 5 months and has been lauded by the
press and the Internet community.

Figure 7-17: The Visible Human Slice Viewer Java applet

Thanks to this application, the public is able to extract interactively high-resolution oblique
slices of arbitrary orientation from within the Visible Human male dataset. This unprecedented
high-quality volume consists of axial cryosection full-color photographs of a complete human
body from head to toe. Each axial section has a pixel resolution of one third of a millimeter, the
inter-slice resolution being 1 mm. The total amount of data represents 13 GB. A smaller volume
comprising only the head of the visible human (1 GB) and an MRI dataset (100 MB) are also
available on-line for browsing. A similar dataset of a female body will also be available in the
near future.

When a visitor accesses the web site, a Java applet is downloaded to his World Wide Web
browser. This applet allows him/her to choose a 3D volume to browse, to specify the parameters
of the slice to extract (orientation, size) either interactively using the mouse or by filling input
text fields. The user can then ask for the corresponding slice from the server. The request is sent
to the server by the Java applet through the Internet. The server extracts the corresponding slice
using the DigiPlan algorithm presented throughout the previous sections, compresses it using a
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JPEG compression scheme (for faster transfer over the Internet) and sends it back to the Java
application on the client for display.

The experimental configuration of the Web parallel server extends the traditional CAP/PS?
hardware architecture (Figure 6-3) by adding aweb server (HTTP server) process on the client
node which thus becomes the interface between the local network cluster where the slice extrac-

tions are performed and the Internet (Figure 7-18).
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Figure 7-18: Architecture of the Visble Human Web Server

The configuration currently in production as a web server, actually consists of a single dual-
Pentium Il 300MHz PC with 16 disks attached onto which the Visible Human dataset is striped.
Oblique dlices are extracted and compressed in nearly one second, which given the current
bandwidth of the Internet can be considered as an interactive rate. The overall capacity of the
system could thus theoretically reach 3’000 extractions per hour in this configuration. Should
an higher rate be desired, the system could be easily scaled up by adding slave storage and com-

putation nodes with no need for an application rewrite.

7.6. Summary

We have presented in this section an innovative approach to extract planar slices of arbitrary
orientation from a 3D discrete volume. Such an application is a fundamental tool in biomedical
imaging, where volumes produced by modalities sucha as X-ray CT, MRI or PET are used for
teaching purposes as well as for diagnosis. While previous methods either used floating-point
arithmetic, expensive dedicated hardware or attempted to use discrete properties of the volume
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in an awkward manner, our approach is purely software-based and relies on rigorous results of
discrete geometry to draw maximum advantage of the discrete nature of the volumetric data.
The key features of the proposed algorithm are:

» The oblique slice is extracted with a discrete plane scanning algorithm using integer
arithmetic.

» The algorithm only needs a 2D resampling step which can be performed incrementally
using integer arithmetic and a nearest neighbor interpolation. This resampling step can
be used to implement zooming at no extra cost

» The determination of the volumic extents intersected by the slice uses the result
established in Section 5.3 about the covering of a digital parallelogram by a regular
rectangular plane tesselation. The hit extents are therefore determined exactly, in linear
time using integer arithmetic.

» Non-isometrically sampled volumes are resampled on the fly. The notion of fat extents
avoids all data dependencies in this case: interpolating a missing voxel never needs data
from two different extents.

» The algorithm was shown to be well suited for parallelization and was integrated into
the CAP/P$parallelization framework where it showed good performance, allowing
the overall system to scale linearly up to 6 PCs working in parallel.

The Visible Human Slice Web Server further demonstrates the qualities of the extraction algo-
rithm and the underlying parallelization framework: scalability, efficiency and robustness.
Another notable aspect of this algorithm is its generality. Though we emphasized biomedical
imaging, such a parallel digital slicing algorithm could find many other application fields like
physics, meteorology or geology to name a few.
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This chapter presents an algorithm for extracting ruled surfaces out of 3D discrete volumes such
as those produced by medical tomographic imaging devices. The algorithm based on discrete
geometry can be paralelized to enable working with very large images. It offers avaluable exten-
sion to the simpler planar slicing algorithm presented in the previous chapter.

8.1. Introduction

Asexplained in the previous sections, most physicians still feel more comfortable today with
the observation of two-dimensional views extracted from 3D volumetric datasets acquired by
biomedical imaging modalities such as CT, MRI, PET, etc... Having built a habit of observing
radiological images with restricted orientations during their education, it is often difficult for
them to extract valuable medical hintsfrom three-dimensional representations. However thetra-
ditional axial, sagittal, and coronal image slicing orientations are more and more considered as
too much of a limitation. Extracting oblique slices of arbitrary orientation is considered as an
important improvement (Chapter 7).

In some situations though, oblique plane dices are still not enough. For instance, sicing
through the middle of several vertebrae with a plane is not possible because of the natural cur-
vature of the vertebral column especialy in regions of high curvature like the lumbar vertebrae
(Figure 8-1). The jaw is another region where plane dlicing is too limited to get a full view of

Region of interest

Figure 8-1: Limitations of oblique plane dicing

Of the three vertebraein the region of interest, only oneisvisiblein its entirety on the
plane slice.

the teeth from left to right. Such views would neverthel ess be very useful for dentists to design
orthodontic devices. Without having recourse to three-dimensional visualization techniques, the
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solution to this kind of problem residesin an extension of the usual slicing algorithms to more
complex surfaces.

8.1.1. Ruled surfaces and cylinders

A classof surfacescalled ruled surfacesis of particular interest. Differential geometry defines
aruled surface o(t, v) as adifferentiable map defined by two elements: a curve a(t) of R3
and a parameterized family of directions w(t) of R3:

o(t,v) = a(t) +vw(t) t,vUl (8-1)

The curve a(t) is called the directrix of the surface while the family of lines L; passing

through a(t) and parallel to w(t) arecalled rulingsof the surface. Ruled surfaces having acon-

stant tangent plane along each ruling are called developable surfaces. Those surfaces can be
“unfolded” and “flattened” with no deformation, which is a fundamental characteristic in our
case, since we want to avoid three-dimensional visualization. The most common types of devel-
opable surfaces are cones and cylinders [7] (Figure 8-2).

/ -
p -w

Figure 8-2: Development of conesand cylinders

We shall focus omylinders. A cylinder is a ruled surface whose directrix is contained in a
plane and whose rulings are of constant direction. Note that this notion encompasses but is not
restricted to the usual circle-based cylinders (Figure 8-3).

a(s)
w(t)

Figure 8-3: A generalized cylinder
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Cylinders whose rulings are normal to the plane of the directrix are particularly well suited to
two-dimensional viewing. Let us consider such a cylinder defined by the differentiable map

a(s v):
o(s,v) = a(s) +vw svidl (8-2
verifying the following additional conditions:

a'(s) Ow sl

(8-3)
Iw] =1
where a is parameterized by its arc length s.
Thetotal differential of o(s, v) writes:
_ 00 ov, _ _, N
do(s,v) = a—sds+a—vdv = a'(s)ds+ wadv (8-9)

Since a is parameterized by the curve length s then ||a’(s)|| = 1. Together with the addi-

tional conditions of Equation 8-3, this indicates that the map o preserves lengths locally and
introduces no deformation which is a key point for the visualization of cylinders on a flat
display.

Also, specifying a cylinder verifying Equation 8-3 only requires determining the plane con-
taining the directrix and then the directrix itself as a 2D curve on this plane. This makes the
interaction with the user very simple with no need for a three-dimensional user-interface or
pointing device.

8.1.2. Digital cylinders

In Section 2.1.3, we recalled that the definition of discrete surfaces is a complex matter and
that several approaches exist. In Chapter 7, we have seen how naive digital planes were partic-
ularly well suited for dlicing through 3D discrete volumes thanks to their appropriate
connectivity and ease of scanning. It is therefore natural to look for similar properties in what
we will defineto be digital cylinders. Interestingly enough, some research has been donein the
field of the incremental recognition of digital planes on discrete surfaces (discrete
polyhedrization) [15]. In the same way as a digital curve is equivalent to a discrete polygonal
ling, i.e., asequence of digital straight line segments, athin digital surface can be conveniently
represented as a juxtaposition of digital plane patches. Chapter 4 exploitsthisideato build dig-
ital representations of Bézier curves and surfaces. Digitization of cylinders can follow the same
principles, and in fact, the properties of cylinders as continuous surfaces even eliminate some
of the problems mentioned in Chapter 4, namely the normal inconsistencies between adjacent
planar patches.
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Thuswe build anaive digital cylinder by first polygonalizing its directrix a(s) on the direc-

trix plane P using the algorithm of Chapter 4 (for the ease of user interaction, we restrict the
directrices to natural splines, equivalent to Bézier curves). The new cylinder defined by that
polygonalized directrix, denoten, (s) , on plaRe consists of a series of adjacent planar fac-

ets. (Figure 8-4). The discrete equivalent to this surface is the union of a set of digital plane

T w()

Figure 8-4: Polygonal cylinder

patches each fitting one of the facets (in the sense of a best approximation of an euclidean plane
by a naive digital plane).

Appropriate connectivity at the edges can be guaranteed following ideas developed in
Section 4.5.2. Each digital plane fitting one of the facets of the polygonal cylinder is defined as
the set of integer points contained between two euclidean boundary planes, one on the left of
the facet and one on the righThe intersections of consecutive euclidean boundary planes on
the same side of the cylinder make up the edges of a boundary cylinder, we call digital cylinder
the set of integer points contained between the two euclidean boundary cylinders (Figure 8-5).
This set of points is 18-connected.

8.2. Algorithm

8.2.1. Overall Design

From the user point of view, the interaction proceeds in three steps (see Figure 8-6):

1. Specification of the plane containing the directrix (directrix plane). The necessary
parameters (normal, center, up direction, width and height) can be specified either inter-
actively or by means of text input fields, just like in the Visible Human Slice Server
user interface (see Section 7.5)

2. Specification of the directrix. In theory, the directrix isan arbitrary planar curve. On
computer systems, common usage has shown that parametric curves of degree three

1. The parametrization of the directrix induces an orientation of the curve and hence a notion of left and
right given anormal to the directrix plane.
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Right boundary plane
of the first facet

T, (1)

~ Edge of = - t
P boundary cylinder Right boundary cylinder

Figure 8-5: Digital cylinder boundaries

(splines or Bézier curves) provide a great flexibility and can be manipulated

intuitively [23]. Therefore we restrict the directrix to this type of curves. The user speci-
fies a series of interpolation points on the directrix plane and the natural spline that
interpolates these points is drawn. Further control of the shape of the curve is then pos-
sible by moving the points or manipulating the tangents to the curve at the arc junctions.
The surface width, i.e., the length the cylinder will span on each side of the directrix

plane (interval of the parameter in Equation 8-2) is also specified at this point.

3. Visualization of the extracted surface

o ® - @ \f

@ Specification of @ Specification of the directrix

the directrix plane using interpolation splines @ Extracted Surface

Figure 8-6: User interaction for the extraction of cylinders
Internaly, the extraction of the cylinder for visualization proceeds as follows. In afirst step,
the directrix is polygonalized. The coordinates of the vertices of that polygonal linein the three-

dimensional coordinate system of the volume are computed and this definesadigital polyhedral
surface (digital cylinder) that fits the cylinder. Then the facets of the digital cylinder are
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extracted as digital rectangles (using the DigiPlan agorithm, Chapter 7). Finally the 2D indi-
vidual facets are merged in the final display buffer. (Figure 8-7).
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of the directrix of the vertices of the facets display buffer

Figure 8-7: Overview of the surface extraction algorithm
8.2.2. Mapping from the directrix plane coor dinates to the volume coor dinates

The proposed surface extraction algorithm involves two different coordinates systems. The
first one, called virtual (or absolute) coordinate system, denoted (O, i, j, k) isrelated to the 3D
volumetric dataset (isometrically resampled if necessary, see Section 7.3.5). The second one,
called directrix plane coordinate system, denoted (R, r, d) is related to the rectangle upon
which the user specifies the directrix (Figure 8-8). Interpolation points given by the user to
define the directrix are expressed by means of pairs (X, Y) of coordinates expressed in
(R, r,d). The coordinates (X, Y, z) of these points in the absolute coordinate system can be
computed by the following elementary relation:

D(D |:rX dX I:QX

i
8= gy dy R
EZD dz dZ RZ

(8-5)

OOo0o.

where (r,, My r,), (dy dy, d,) and (R, R, R,) represent the respective absolute coordinates of
r,d and R (Figure 8-8).
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Figure 8-8: Coordinate systemsfor the extraction of surfaces

8.2.3. Weighting at facetsjoints

Section 8.1.2 defined 18-connected digital cylinders. In fact, appropriate discrete connectivity
IS not enough to display the surface on the screen grid. Indeed, in the general case, a discrete
cylinder does not have the functionality property of naive digital planes, i.e., thereis no trivia
map between the cylinder and a connected subset of Z2. Therefore the display of the surface
becomes more intricate. The key point for accurate display of the surface is the preservation of
the distances so as to avoid deformations. However, arc lengths of the polygonalized directrix
are irrational in the general case, whereas facets extracted as discrete rectangles have integer
height. Consequently the pixel grids of the extracted facets do not match the pixel grid of the
final display buffer and the facets need to be resampled into that final buffer. This situation is
illustrated in Figure 8-9 for a digital cylinder consisting of two facets. One can see that due to

—_}—oOverlap

Facet 0 Facet 1 Final display buffer

Figure 8-9: Merging facetsinto the final display buffer

|, = DyD; not being an integer, the grid of facet 1 must be shifted with respect to the grid of
thefinal display buffer, i.e., facet 1 needs resampling when merged into the final surface display
buffer.

Thisfinal resampling step, though somewhat optimizable since resampling weights are con-
stant for a given facet, represents an additional computational cost to the surface extraction
algorithm. Fortunately by rethinking the facet extraction, this overhead can be avoided.
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Section 7.2.3 introduces the resampling operation that maps the intermediate projection of a
discrete rectangle into the viewing space. This resampling allows to extract rectangles centered
on non-integer points of the discrete lattice of the 3D volume. This characteristic can be conve-
niently used to avoid resampling the facets into the display buffer. Indeed by shifting the center
of the facets and incrementing their height appropriately we can align the facet grids with the
screen buffer grid. Figure 8-9 shows that the needed center shift is essentially vertical with
respect to thefinal display grid, which meansthat the center of each facet Q; needsto be shifted
by acertain a;d; where a; O R . Figure 8-10 which represents the scene in projection on the

directrix plane P, shows how this shift a; = D;F; is caculated (for a directrix consisting of
three edges).

No

DO
Fo i do

Q‘Wl
Eo
F D1
EoD, = F,D

1! EeD,+DE =1
Figure 8-10: Facet shiftsand height increase (projection on the directrix plane)
Small dots represent the horizontal pixel boundaries of the screen display grid. The directrix

vertices are denoted D, . The facets vectors d; are defined by the relation

d = Di+1_Di

Sd LF i B 8-6
= B, -D)] (56)

The length and position of the facets that are extracted are not defined by the segments
D,D; ., but rather by F,G, where F; and G; are defined by the following recurrence:

E Fo = Dg

0 (8-7)
E FiD; = Fi_1D;—[F_,Dj]

%Di+1Gi = -[-FiDj.4l (roundupF;D; , 1)

F; iscalculated so asto add an offset that compensates exactly the non-integer length of the
| — 1 facet, ensuring that the grid of facet i iswell aligned onthe screen grid. G; simply rounds

the facet height to the smallest greater integer.
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By proceeding thisway, facets extracted as discrete rectangles can be mapped directly into the
surface display buffer with no additional resampling of the whole facet. However Figure 8-9
and Figure 8-10 indicate that adjacent facets may superimpose along a pixel line at their junc-
tion. Thisisthe case for instance on the fifth pixel line of Figure 8-9 and Figure 8-10. At these
junction lines the two adjacent facets must be blended together into the surface buffer. The con-
tribution of each facet to the junction lineis simply determined by the geometry of Figure 8-10.

That is, the blending weights of facets i and i + 1 at their junction is given by:

wi(i) = Fi,1Djq

w(i+1) = 1-w(i)

(8-9)

8.3. Parallel implementation

The extraction of digital cylinders can be performed in paralel, following the same ideas as
the extraction of oblique naive digital planes. Again, the 3D volumetric dataset is physically
divided into small parallelepipedic subvolumes called extents that are distributed among the
individual disks connected to the system. The flow-chart of Figure 8-11 describes how theindi-
vidual operations consistuting the surface extraction can be both pipelined and carried out in

extent extent lane
‘extract plane par P
coordinales 1 ead extent) 933 fromextent and | P2
from disk resample onto
screen space
' '

facet
coordinates

Compute

facet

merge

—> Intersected plane parts
Extents [ ' into facet
' 0 buffer
extent extent extract plane pam plane
coordinates ((eaq extent data, o eftent a’?’\ part
. from disk resample onto
Tomographic screen space,
image file | i . Merge
name Polygonalize : facets visualize
> the directrix into screen ) surface
. Compute the
List of p! ” buffer
interpolation geometry o
the facets

points on the
directrix plane

facet

coordinates

Compute
Intersected
Extents

cooninates et (exactplane pay PP
read extent from extentand | P2
from disk resample onto
screen space
' .
' [

extent plane

coordinates extract plane par

from extent and
resample onto
screen space,

'
.
extent
read extent) 9313
from disk

facet

merge
plane parts
into facet
buffer

Figure 8-11: Pipelined/parallel surface extraction flow-chart

Pipelining occurs at four levels:

* a plane part can be extracted from an extent and be resampled while the next extent is
read from the disk
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 a plane part can be merged into a facet buffer while the next plane part is being
extracted

+ a facet can be merged into the screen buffer while the next facet is being extracted on
the same storage and processing node

« finally, a surface can be visualized while the next one is being extracted in case a
request for browsing through the volume was made

Parallelism can be achieved at two levels:
* several extents can be fetched simultaneously from the disks to increase 1/O throughput

« digital plane parts can be extracted from several extents at the same time if several
processors are available.

The parallel surface extraction algorithm shares most of the characteristics of the digital plane
extraction algorithm that resides at its core. The extraction of plane parts from each extent still
does not present any data dependency with the other extents allowing all the slave computation
nodes to perform the extraction in parallel with no need for synchronization or data exchange.
The only communications take place between the client node (master) and the computation
server nodes (slaves) when the extraction request is sent to the slaves and the results are merged
back.

Figure 8-11 shows that the flow-chart for surface extraction embeds the flow-chart of plane
extraction. The CAP language allows such compositionality of operations and lets the program-
mer define pipelined/parallel operations including other lower-level pipelined/parallel
operations. The actual implementation can thus be made very simple (Figure 8-12).

8.3.1. Possible variations

The parallelization strategy proposed in the previous section actually hides a subtile pitfall that
might compromise the performance of the algorithm. Indeed a potential problem lies in the fact
that a given extent may be intersected by several of the planes making up the facets of the sur-
face. In a usual configuration, each extent lying close to a facet joint may intersect the two facets
meeting at the joint, but in more unusual configurations where the extents are big and/or the fac-
ets are particularly narrow (which happens when the curvature of the surface is important) each
extent may be intersected by a significant number of planes.

In the previous parallelization design, the extraction request is first splitted into a set of extrac-
tion requests for planes and then each individual plane extraction request is itself divided into
volumic extent reading and processing requests. This implies that the same extent may be
requested and read from the disk several times for different planes which is clearly not optimal.
In fact, things are not so bad however because thpd8&llel file system upon which the appli-
cation relies, includes a built-in cache system. Extents read from the disk are stored and kept in
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i nt Conput eSurfaceFacets (SurfaceParaneters* paraneters,
Pl aneExt racti onPar anet er s* request)
{ /I C++ code }

voi d MergeFacet s(SurfaceView screenBuffer, Plane* facet)
{ /I C++ code }

oper ati onPs2Server: : Pl aneExtraction
in Pl aneExtracti onPar anet er s* paraneters
out Pl ane* pl ane

{ /I Defined in Figure7-9 }

operationPs2Server:: SurfaceExtraction
in Sur f acePar anet er s* paraneters
out SurfaceVi ew* surface
{
paral | el while (ConputeSurfaceFacets,
MergeFacets, Cient, SurfaceView surface)

(

Pl aneExt racti on

)

}

Figure 8-12: CAP pseudo-code for the extraction of surfaces

memory using a “least recently used” cache mechdniameasonable cache size ensures that

no extent needs to be read from the disks more than once. Nonetheless this hides the design flaw
only partially since fetching an extent from the cache implies a small additional overhead that
can be avoided with a better parallelization strategy.

An alternative to the previous design consists in first computing all the extents intersected by
the surface and grouping the plane extraction requests on a per extent basis. Then, for each
extent, the plane parts corresponding to each plane it intersects are extracted. With this method
each extent needs to be fetched only once, thus avoiding any overhead due to multiple extent
fetches even if a cache mechanism is available. Figure 8-13 shows the flow-chart corresponding
to this parallelization strategy.

The computation of the extents hit by the surface is made facet by facet. For each intersected
extent a list is built that contains an indication of each facet of the surface that intersects the
extent. A fast mechanism for retrieving the list corresponding to a given extent is therefore nec-
essary. A hash-table is a suitable data structure since it provides constant time access to its
elements provided a good hash-code function can be devised which is the case in this applica-
tion. Indeed the problem has spatial coherency: the surface intersects a limited connected subset
of the extents contained in the volume. Therefore a modular mapping of the three coordinates
of the extents provides a very good hash function.

For instance, let us consider a 3D image volume divided in cubic 32-pixel-sided extents. Let
us assume also that most extracted surfaces are smaller than 1024x1024 pixels. That means most

1. Oncethe cacheisfull, each newly read extent replaces the least recently used one in the cache
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Figure 8-13: Alternative pipelined/parallel surface extraction flow-chart

extracted surfaces are comprised in a 32-extent-sided cube. Therefore we allocate a hash-table
with 323 entries (128 KB on asystem with 32 bits pointers). The extent of coordinates (X, Y, z)

is stored at index 322(z mod 32) + 32(y mod 32) + (zmod 32) . This index can be computed
efficiently with bit-level boolean operations. All images smaller than 1024x1024 pixels are
guaranteed to store at most one extent per hash-table entry, while images of sixe 2048x2048 or
smaller may store at most two extents per hash-table entry and so on. This shows that even for
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i nt Conput eSur f aceExt ent s( SurfacePar anet ers* paraneters,
Ext ent ReadRequest * request)
{ /I C++ code }

voi d EnptyMerge(voi d*, Surfacel D¥)
{ /I Placeholder merge function }

i nt Sel ect Next Ext ent Facet ( ReadExt ent* extent, ExtentFacetExtraction* request)
{ /I For each read extent, generate the necessary plane extraction requests }

voi d MergeFacet Parts(SurfaceFacets* facets, FacetPart* facetPart)
{ /I Merge a plane part into the appropriate facet buffer }

| eaf operation FacetPartExtraction
i n ExtentFacet Extracti on* request
out FacetPart* facetPart

{ /I C++ code }

| eaf operation ConbineFacets
in Surfacel D* input
out SurfaceView* output)
{ /I C++ code }

operati onPs2Server:: SurfaceExtraction
in Sur f acePar anet er s* paraneters
out Sur f aceVi ew* surface

paral l el while (ConputeSurfaceExtents,
EnptyMerge, Cdient, Surfacel D* surface)
(
Ext ent Server [t hi sTokenP- >Ext ent Ser ver | ndex] . ReadExt ent
>->
paral | el while (Sel ectNextExtentFacet,
MergeFacetPart, Client, SurfaceFacets facets)
(
Conput eSer ver [ t hi sTokenP- >Ext ent Ser ver | ndex*
NB_OF_NODES/ NB_OF_DI SKS] . Facet Part Extracti on

)
)

>-> Conbi neFacet s;

Figure 8-14. CAP pseudo-code for the alter native surface extraction strategy

large extracted surfaces, this hash-table solution should provide better access times than any
other data structure.

8.4. Summary

This section presented a novel method for extracting ruled surfaces (more specifically gener-
alized cylinders) from 3D voxel-based volumes such as those produced by most medical

iImaging modalities. The extraction of cylinders that can be “flattened” and displayed on a 2D
display while still preserving lengths, considerably enhances the possibilities offered by oblique
plane slicing which remains the fundamental tool for medical image visualization. This exten-

sion is intuitive and simplifies user interaction.
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The algorithm is based on a definition of digital cylinders that best fit a continuous cylinder
by means of adjacent digital plane patches. Digital cylinders can thus be extracted using adigital
plane scanning algorithm which was shown to be particularly efficient in the previous chapter.
The algorithm can also be parallelized in order to be able to work with very large 3D volumes.
Two parallelization strategies were presented: a first one that favors code reuse by relying on
the paralel digital plane scanning algorithm and a second one that optimizes the access to the

volumic extents making up the 3D volume.
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9 Conclusion

Discrete geometry is a new theoretical framework dealing with geometric objects consisting
of denumerable sets of points such as those that are generated and manipulated by computers.
Thisdisciplineisat crossroads between pure abstract mathematics and concrete computer based
applications for which it brings an interesting alternative to agorithms based on euclidean
geometry. The present research work, divided into two parts, illustrates this situation.

First, we presented a collection of theoretical results related to current problems in discrete
geometry. Discrete geometry and more particularly, the subfield called arithmetic geometry
which we focused on, are indeed new subjects of research where wide areas remain to be
explored. Among the contributions, we presented a new approach to the study of 3D digita
lines. Studying 3D digital lines is significantly more complex than 2D digital lines. Thanks to
this new viewpoint we could derive a definition and interesting theorems about the combinato-
rial structure of 3D digital lines. Then we introduced a new criterion to polygonalize Bézier
curves and surface patches efficiently and in a consistent way with existing results in discrete
geometry. Unlike previous approaches this criterion does not rely on an arbitrary precision con-
stant but only on the geometry of the lattice of integers and the definition of naive digital lines
and planes. Finally we considered the multi-scale discreteness problem which deals with estab-
lishing the relations between the discretizations of geometric objects at different resolutions.
Using two different methods, we presented a solution to the determination of the covering of
digital lines and parallelograms by regular rectangular tesselations of the plane. While the
method used for digital lines was purely arithmetic, the method used for digital parallelograms
was geometric, based on the morphological dilation operation, thus building the first bridge
between mathematical morphology and discrete geometry.

In the second half of this work, we illustrated the benefits of using discrete geometry for com-
puter imaging with two applications: the extraction of oblique planes and ruled surfaces from
3D discrete images such as tomographic images commonly found in medical imaging. We
showed the importance of such applications for radiologists. The extraction of oblique slices is
based on a naive digital plane scanning algorithm using integer arithmetic and avoiding costly
tri-linear floating point operations. This algorithm was shown to be suitable for parallelization
using the CAP/PSframework. The resulting full-software implementation is highly scalable
and able to run on architectures ranging from a single isolated PC with one or several disks to a
network cluster of PCs with up to 12 disks each. The measured performance figures for the
oblique slice extraction showed that the extraction algorithm itself is not the bottleneck in the
considered parallel architectures. Furthermore the presence of this application on the Internet in
the spectacular Visible Human Slice Server for more than seven months at the time of this writ-
ing, has also demonstrated its high stability which can be attributed to some extent to the
underlying usage of discrete geometry. The extraction of digital generalized cylinders was pre-
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sented as a natural and useful extension of the oblique slicing algorithm. Digital generalized
cylinders were defined asthe discrete counterpart of euclidean ruled surfaceshaving a2D spline
for directrix and rulings orthogonal to the plane of the directrix. We showed that these objects
could be equivaently considered as an 18-connected juxtaposition of naive digital plane pieces
and derived from this result an extraction algorithm based on the naive digital plane scanning
algorithm. We also showed that thanks to a careful choice of the geometrical parameters of the
plane pieces, additional resamplings can be avoided. Furthermore a parallelization strategy that
optimizes the number of accesses to the disks has been proposed. Thus the extraction of digital
generalized cylindersincurs arelatively small overhead when compared to the simpler oblique
glicing algorithm.

Whilethiswork tries to bring solutions to some problems, it also raises various questions and
opens the doors for future research. On the theoretical side, none of the subjects that have been
considered here has been fully explored. The theory of 3D digital lines is certainly the most
ambitious and has room for alot of new developments. can we define arithmetically the digital
line that corresponds to the digitization of an euclidean line by the closest integer point ? How
can we control the connectivity of adigital line from its projection on its normal plane ? Can
subsets of the projection lattice of Z2 other than squares define connected subsets of Z3? Can
those subsets be called digital lines ? Can the results be extended to higher dimensions ? The
approach to the polygonalization of Bézier surface patches has also left some open questions,
especially with respect to the connectivity of adjacent patches. Eric Andrés et al. have provided
some directions for 6-connected patches [4] but a more in-depth study is needed for thinner
ones. Multi-scale geometry is also an interesting field for further investigations and the link we
sketched between mathematical morphology and discrete geometry might be a fruitful research
direction.

The applications we developed in this work are a clear example of the benefits of using dis-
crete geometry for digital image processing algorithms. The extraction of more complex
surfaces is a natural extension that comes to mind. Depending on how these surfaces are
defined, the problem can be more or less intricate. The extraction of digital surfaces relies on a
representation of surfaces by digital planar facets, therefore for general digital surfaces, a poly-
hedrization algorithm is needed. Isabelle Debled has accomplished a reference work in that
field [15]. The proposed algorithm remains a little cumbersome however, possibly given appro-
priate restrictions, a simpler version could be derived. Discrete geometry could find a niche in
other fields of computer graphics or medical imaging, e.g., surface tracking, tomographic recon-
struction, volume visualization, ray-tracing, etc... In all these fields, discrete approaches have
been proposed (cf. the pioneering work of A. Kaufman and his team on discrete ray
tracing [57]). These domains could certainly find great benefits in the recent developments of
arithmetic geometry as would be the case for other applications involving sampled data, not nec-
essarily images.
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