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A wide range of human activities relies on 2D and 3D image processing, synthesis and dis-
play. Medicine is for instance one of the fields where imaging has gained particular importance
in the recent past because of the strong demand for non-invasive exploration techniques prima-
rily based on tomographic imaging.

With the advent of computers and digital technologies, the vast majority of the images manip-
ulated today in medicine as well as in other disciplines is composed of discrete samples, called
pixels (or voxels in the case of volumic images). In order to exploit these images on computers
efficiently, several challenges must be met:

• traditional euclidean geometry, based on continuous concepts, appears not to be 
suited to computers and images which are intrisically discrete. Geometric operatio
based on floating-point arithmetic often lead to inconsistent results and algorithmic
instability

• the increasing size of the images, especially three-dimensional, creates an I/O 
bandwidth problem: images that do not entirely fit in memory must be read from 
comparatively slow mass storage devices

In this context, a solid theoretical basis is needed to solve the problems introduced by th
equacy of traditional euclidean geometry with respect to digital images. Discrete geome
young and active branch of mathematics that aims at building such a theoretical foundat
a consistent description of digital objects and operations. By nature, the results it establis
particularly well-suited to computer processing and lead to simple and efficient integer-
algorithms that can be parallelized including at the I/O level, thus bringing increased p
mance and a solution to the I/O bottleneck problem.

In the first half of this work, we propose new theoretical results and definitions for object
three-dimensional digital lines, digital spline curves and surface patches as well as algo
for rigorously solving problems like the intersection of 3D digital lines and planes or the d
mination of the covering of digital lines and parallelograms by rectangular plane tessela

In the second half, we emphasize the strengths of this approach by introducing two co
applications of these results in the field of medical imaging, namely the extraction of pla
arbitrary orientation and of ruled surfaces from very large 3D discrete volumes (se
Gigabytes). These algorithms derived from discrete geometry are implemented on p
architectures consisting of commodity components (standard PCs with multiple SCSI
connected through Fast Ethernet). They achieve remarkable performance and scalability



action
see
on a configuration consisting of a master and five slave nodes (Dual PentiumPro at 200MHz
with 12 disks each), the plane extraction algorithm is able to extract close to 5 slices per second
(512x512 pixels, 24 bits color).  On a more modest configuration consisting of a Dual-
Pentium II at 300MHz with 16 disks, the same algorithm has also proven its stability and per-
formance by serving Internet users and performing approximately 160’000 plane extr
requests from the Visible Human body (13 GB) in 6 months (
http://visiblehuman.epfl.ch/). 
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Résumé

Un grand nombre d'activités humaines reposent aujourd’hui sur le traitement, la synth
l'affichage d'images. La médecine est ainsi un des domaines où l'imagerie a gagné une
tance particulière ces dernières années à cause de la forte demande en techniques non
de diagnostic et de traitement, reposant essentiellement sur l’imagerie tomographique.

Avec l'avènement de l'informatique et des technologies numériques, l'immense major
images ainsi manipulées aujourd'hui en médecine comme dans d'autres domaines est c
de points discrets appelés pixels (ou voxels dans le cas d'images volumiques). L'exploitati
informatique de telles images doit, pour être efficace, faire face à plusieurs défis:

• la géométrie euclidienne classique, basée sur des concepts continus, se révèle pe
adaptée à des images et des traitements par ordinateur qui sont intrinsèquement 
discrets.  Les opérations géometriques basées sur l’arithmétique en nombre flotta
apparaissent ainsi plus délicates et conduisent souvent à des résultats incohérent
des instabilités algorithmiques.

• l'accroissement de la taille des images à traiter, en particulier 3D, pose un problèm
d’entrées/sorties lorsque les images deviennent trop grandes pour être entièreme
contenues en mémoire et doivent être lues depuis des périphériques de stockage
comparativement plus lents.

Dans ce contexte, une base théorique solide permettant de résoudre les problèmes lié
daptation de la géométrie euclidienne classique aux images numériques devient nécess
géométrie discrète est une branche émergente et très active des mathématiques dont 
de construire une telle fondation pour la description des objets et opérations discrets. Pa
les résultats qui en dérivent sont particulièrement adaptés à une implémentation informa
conduisent à des algorithmes en nombres entiers qui peuvent être plus facilement paral
compris au niveau de l’accès aux données, apportant ainsi une solution au problème de
tion des entrées/sorties.

Dans la première moitié de cet ouvrage, nous proposons donc un certain nombre de no
résultats et définitions théoriques concernant des objets comme les droites discrètes 
courbes et surfaces splines discrètes ainsi que des algorithmes permettant de résoudre
rigoureuse des problèmes tels que l'intersection de droites 3D et de plans discrets ou e
détermination de la couverture de droites et parallélogrammes discrets par des pavages
gulaires du plan.
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Dans la seconde moitié, nous mettons en évidence le potentiel de cette approche à trav
applications concrètes des résultats précédents dans le domaine de l'imagerie médicale,
l'extraction de plans de coupe d'orientation quelconque et de surfaces réglées de l'inté
volumes discrets de très grandes dimensions (plusieurs Gigaoctets).  Ces algorithmes dé
la géométrie discrète et implémentés sur des architectures parallèles à base de composa
public (PCs munis de grappes de disques SCSI et connectés par Fast Ethernet) atteig
performances remarquables et tirent au mieux partie de la puissance du matériel dis
allant du simple PC isolé à la configuration haut de gamme constituée d'un réseau lo
machines. Ainsi, sur une configuration composée d’un maitre et de cinq esclaves (bi-P
Pro à 200MHz avec douze disques chacun), l’algorithme d’extraction de plan est ca
d’extraire près de cinq images par seconde (512x512 pixels, 24 bits couleur). Sur une c
ration plus modeste composée d’un unique bi-Pentium II à 300 Mhz avec 16 disques, le
algorithme a prouvé sa grande stabilité et sa performance en servant, en six mois, aux In
tes de par le monde, plus 160 000 requêtes d’extraction de plan de l’intérieur du Visible H
(13 Go) (voir le serveur “Le corps humain sous tous ses angles”:
http://visiblehuman.epfl.ch/)
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Preface

Down to its theoretical roots in Boolean algebra and set theory, computer science is probably
the discipline that has accepted the fewer compromises with the continuum. In a surrounding
universe which constantly hesitates between the discrete steps of quantum physics and the con-
tinuous moves of Newton’s and Einstein’s mechanics, computers and their silicon chip
beating with their invariable 0s and 1s have founded the apparently immovable reign of 
information and computation. And all the physical phenomena that not so long ago were g
as continuous have now become discrete, victims of sampling and quantization. Examp
innumerable: digital compact discs have eradicated the analog signals recorded on viny
ital cameras will probably seal the same fate on traditional photography, radio and tele
signals will soon follow. From the most elementary to the most complex, every quantity t
some point goes through a computer has little choice but to be sampled and quantized. 

At the dawn of this digital revolution, new disciplines like information theory were born w
other topics in mathematics and signal theory that would have otherwise been neglecte
gained new importance. Among these, digital geometry has raised particular interest 
mathematicians and scientists working in computer graphics in the last two decades. Thi
surprising since image visualization and processing are nowadays omnipresent in alm
human activities. From entertainment (computer games, movie pictures) to scientific disc
(medical imaging, satellite imaging, astronomy) and industrial activities (computer a
design, quality control), saying that digital images are everywhere has become a commo
This overwhelming presence of the image drives strong demands for algorithms both for
synthesis and analysis. These two main algorithmic classes have a common denom
geometry. Images are indeed often synthesized by means of geometric primitives s
straight line segments, curved lines, surfaces and geometric operations such as scalin
tions, shearings, etc... On the other hand, image analysis often requires identifying thos
primitive geometric objects in order to extract valuable information.

Every pupil is taught about euclidean geometry right from his/her early years at scho
knows about lines, triangles, circles and their geometric properties: intersections, symm
etc... Later on, students learn about algebraization of these geometric notions and know
represent these objects and their properties by means of equations and numbers. So qu
rally, people tend to have high hopes of getting good results when applying these famili
so carefully learned notions to computer images. Unfortunately this approach is often 
pointing and the challenges posed by discrete geometrical structures soon appea
considerable.
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The simplest questions of euclidean geometry become apparently inextricable when consid-
ered in a discrete space: the very definition of a straight line as the shortest path between two
points does not hold anymore, digital straight lines may have more than one intersection point
(even worse: the set of points making up this intersection may be disconnected), in a discrete
space, a simple operation like a rotation is anything but easy to define since ensuring properties
like shape preservation is really arduous. For many, these difficulties arise from the fact that dis-
crete geometry is considered as an approximation or degenerate case of the more familiar
euclidean geometry. Recent experience has shown on the contrary, that there is most to gain in
building a fresh new theory aimed at studying the intrisic properties of digital structures inde-
pendently of euclidean geometry approximations.

Discrete geometry is this branch of mathematics that has developed and grown out of the dif-
ficulties and frustrations engendered by the manipulation of continuous concepts on discrete
computing machines. Initially driven by practical considerations exclusively, discrete geometry
has now become a fully-fledged mathematical theory of its own but it still finds its ultimate
beauty in concrete applications. And even though it can find lots of other application fields, it
is naturally particularly well-suited to computer imaging problems.

Discrete geometry is a discipline in its infancy when compared to the twenty-three centuries
of euclidean geometry. It is a vast open research field where the questions are many and the
answers only a few. Research proceeds in a wide variety of areas and the synthesis effort that
characterizes mature sciences will probably come in a few years only. Therefore the first half
of this work does not attempt at presenting a consistent set of results focused towards a specific
objective but rather a collection of selected topics: intersection of 2D digital lines, definition and
properties of 3D digital lines, digitization of Bézier curves and surfaces and finally the cov
of discrete structures (digital lines and parallelograms) by rectangular tessellations of the

As we underlined before, developments in discrete geometry are often driven by pr
computing needs and this discipline finds its ultimate full expression in concrete applica
Therefore, in the second half of this work, we show how discrete geometry and especially
of the results presented in the first half were used to produce two high-performance m
imaging applications. DigiPlan is a library for the extraction of planes of arbitrary orientati
out of 3D discrete volumes and DigiSurf is a library that generalizes the former and allows
extract ruled surfaces out of 3D discrete volumes. 

Though strictly speaking, these algorithms are perfectly suitable for other disciplines
physics or geology), medicine which is a very demanding domain for computer imaging
niques is deemed a particularly good application field for discrete geometry and has histo
driven its early developments. Indeed images produced by medical scanning devices
puted Tomography, Magnetic Resonance Imaging) are of course discrete and are con
increasing in resolution and hence in size. This induces new constraints and perfor
requirements both in terms of processing power and I/O bandwidth. Furthermore, current
aim at spreading the usage of digital media like CD-ROMs or the Internet as a me
exchange of images between physicians which will require high portability and scalabil
visualization applications even on low-end computer systems.
Page 18
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Thanks to the underlying theoretical results in discrete geometry, the proposed algorithms use
integers only wherever possible and do not need dedicated hardware. Their simplified and
robust algorithmics as well as their integration in the state-of-the-art parallelization software
framework CAP/PS2 made it possible to design parallel implementations that take maximum
advantage of the underlying commodity hardware and scale particularly well from the low-end
single PC computer up to a network cluster consisting of several PC’s with several
attached.
Page 19
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1 Introduction

In recent years, with the spread of the usage of images generated or processed by computers,
a new mathematical theory called discrete geometry has emerged beside traditional euclidean
geometry. This theory aims at studying objects called discrete objects consisting of countable
sets of points, whereas euclidean continuous objects generally consist of non-denumerable sets
of points. Besides their names, discrete objects have little in common with euclidean geometric
objects. Indeed, most elementary results of euclidean geometry do not hold in discrete spaces:
fundamental notions like continuity are shaken (what does “continuous” mean in a di
space ?), even the very definitions of objects become complex (how can a straight line s
be defined in a discrete space ?). Discrete geometry tries to address these problems by 
new results specific to discrete spaces and objects, and transposing the familiar not
euclidean geometry to this context.

Discrete geometry is more of a set of theories rather than a single theory. If the goals ar
the ways to get there are many, and the name “discrete geometry” gathers different re
directions together: discrete topology, arithmetic geometry, graph theory, theory of ce
automata. Among these tracks, the first two currently seem the most promising and bene
the work of most researchers in the field.

Discrete topology considers discrete geometrical objects under the topological angle eith
means of connectivity relations (see Section 2.1.1 for a definition) or as combina
structures [24][53]. On the other hand arithmetic geometry tries to link the properties of discret
geometric objects to those of integer numbers. Thus it tries to inherit from one of the olde
ories in mathematics, also one of the most puzzling that apparently manipulates the simp
the most fundamental concepts, integer numbers, and yet hides perhaps the most arduo
lems. Recently, fascinating results about digital lines and planes, quasi-affine transform
discrete rotations and linearization of geometric objects have generated a growing inter
arithmetic geometry. The approach still promises a wealth of new results and elegant so
and is seen by some specialists as the future of discrete geometry [24]. Moreover, unli
crete topology which may be sometimes seen as more abstract and whose conne
concrete applications is not always obvious, arithmetic geometry, closely tied to arithmet
culus, is often more algorithmic and more directly linked to computer implementation.

All these aspects make discrete geometry, and more specifically arithmetic geometry, a
rial of choice for new studies and algorithms for image visualization and manipula
Therefore, we present in the following sections making up the first half of this work a con
tion to the field as a collection of results whose common denominator is their inte
application to the medical visualization applications presented in the second half of this 
Page 23
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First, fundamental notions and selected existing results of discrete geometry are introduced
with particular focus on arithmetic digital lines and planes. Then, we tackle the problem of 3D
digital lines for which we propose an original approach and derive interesting new results such
as the existence of combinatorially distinct 3D digital lines having the same direction. Unlike
2D digital lines that have received considerable attention and for which numerous results have
been established, 3D digital lines remain a mostly unexplored area. We present a new method
for digitizing Bézier curves and surface patches that is compatible with existing results of d
geometry. Earlier methods generally rely on the choice of an arbitrary constant whose
with respect to the sampling grid is not clear, our approach avoids this problem and ap
mates Bézier curves and surface patches by digital straight line segments and digita
pieces in a close to optimal manner. The first half of this work is then concluded with a 
of two problems related to what we call multi-scale discrete geometry: rectangular sub-lattices
of  induce a tessellation of the plane that can be seen as another scale of discretenes
the fundamental tessellation generated by  itself. The relations between those two le
discreteness have a theoretical and also practical interest for some applications. In this 
we propose a solution to two particular problems: determining the covering of digital line
of digital parallelograms by regular rectangular tessellations of the plane.

¾2

¾2
Page 24
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2 2D Digital Lines and Planes

This chapter introduces the basic notions of discrete geometry that make up the foundations of the
subsequent chapters. The definitions of digital straight lines and planes as well as their basic prop-
erties are presented. Closing the chapter are two original results about the intersection of digital
lines and the relation between the arithmetic offset and the induced shift in their combinatorial
structure.

2.1. Notations and definitions

In this section we recall some very basic results of number theory and introduce the notations
that will be used throughout this work. Proofs for results mentioned here can be found in a ref-
erence book on the theory of numbers such as [29].

a,b being two integers, we denote with  the quotient of the euclidean division of a by b

while  denotes the remainder of this division, otherwise called residue of a to modulus b.

The fundamental relation between these two values writes: 

(2-1)

We denote with  the greatest common divider of  and .  and  are said to be
relatively prime if .

Theorem 2-1. Let  and let  then there exist two integers u and v
such that:

(2-2)

Proof. The demonstration of this fundamental theorem can be found in any treatise on the
theory of numbers such as [29]

a
b
---

a
b
---

 
 
 

a b
a
b
---

a
b
---

 
 
 

+=

a b,( )gcd a b a b
a b,( )gcd 1=

a b,( ) ¾2∈ g a b,( )gcd=

au bv+ g=
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2D Digital Lines and Planes
Notations and definitions2

) 
Often demonstrations will be made with restrictions on the directions of discrete objects for
the sake of clarity. Unless otherwise noted, 3D discrete objects have a direction given by an inte-
ger vector  verifying the following hypotheses:

(2-3)

The first one, motivated by arithmetical reasons, is not a real restriction: the general case can
be quite easily reduced to it. The second one is more interesting as it stems from the symmetries
of the  space (or those of the cube). These inequalities describe what is called the standard
simplex (Figure 2-1), which is the fundamental domain of the group of symmetries of the cube.

Using this group, the study of 3D digital lines or planes directed by any vector , can be
reduced to those directed by vectors belonging to this fundamental domain. Results for the other
directions can be easily derived using the symmetries of the cube (combinations of reflections
and coordinates swaps).

We also recall here some basic notions of 2D and 3D discrete topologies [35]. Let  be the
set of relative integers. A point  of  is defined by its coordinates , a point of

 is defined by its coordinates . We call 2D (resp. 3D) image array, a tessella-
tion of  (resp. ) into regular tiles which we call pixels (resp. voxels). There are two usual
conventions to define this tessellation:

• centered pixels (resp. voxels): the pixel (resp. voxel) of coordinates  (resp. 

) corresponds to the interval of  (resp. ), 

 (resp. 

)

• edged pixels (resp. voxels): the pixel (resp. voxel) of coordinates  (resp. 

corresponds to the interval of  (resp. ),  (resp. 

)

Figure 2-1: The standard simplex

a b c, ,( )

a b c, ,( )gcd 1=

0 a b c< <≤



¾3

x

y

z

1

1

1

a b c, ,( )

¾
P ¾2 x y,( ) ¾2∈

¾3 x y z, ,( ) ¾3∈
¶2 ¶3

x y,( )
x y z, ,( ) ¶2 ¶3

x 0.5– x 0.5+, )[ y 0.5– y 0.5+, )[×
x 0.5– x 0.5+, )[ y 0.5– y 0.5+, )[× z 0.5– z 0.5+, )[×

x y,( ) x y z, ,( )
¶2 ¶3 x x 1+, )[ y y 1+, )[×

x x 1+, )[ y y 1+, )[× z z 1+, )[×
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2D Digital Lines and Planes
Notations and definitions
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These conventions are rigorously equivalent. They induce however some modifications in
algebraic equations of discrete objects defined relatively to continuous objects. For instance, the
equation of the digital line that covers an euclidean line is not the same if centered or edged pix-
els are considered (Figure 2-2). For consistence, we always use the “edged pixels” conv

These tessellations establish a one-to-one correspondence between the integer lat
(resp. ) and the elements of a 2D (resp. 3D) image array. We will use these two po
view indifferently and speak either of points or pixels/voxels.

2.1.1. Discrete adjacency and connectedness

Two distinct points  and  of  are said to be

• 8-adjacent if their coordinates differ by at most 1, , i.e. the

corresponding pixels share one common vertex.

• 4-adjacent if one at most of their coordinates differs by 1, , i.e

the corresponding pixels share one common edge.

It is clear that two points that are 4-adjacent are also 8-adjacent. We say that two po
strictly 8-adjacent when they are 8-adjacent but not 4-adjacent.

Figure 2-2: Centered vs. edged pixels

The same digital line  is drawn using centered and edged pixels. In the

first case it covers the euclidean line , in the second it does not.

Centered pixels

Edged pixels

D 3 5– 4– 8, , ,( )
3x 5y– 0=

¾2

¾3

P1 x1 y1,( ) P2 x2 y2,( ) ¾2

max x2 x1– y2 y1–,( ) 1≤

x2 x1– y2 y1–+ 1≤
Page 27



2D Digital Lines and Planes
Notations and definitions2

n 

els 

ent and
-

t

t  of
 of

ined in
ay that

n
8-path)

ave
nels
.

Similarly, two distinct points  and  of  are said to be 

• 26-adjacent if their coordinates differ by at most 1, 
, i.e. the corresponding voxels share one commo

vertex. 

• 18-adjacent if two at most of their coordinates differ by 1, i.e. the corresponding vox
share one common edge.

• 6-adjacent if one at most of their coordinates differs by 1, 
, i.e. the corresponding voxels share one common 

face.

It is also clear in this case that if two points are 6-adjacent then they are also 18-adjac
26-adjacent. We say two points are strictly 26-adjacent if they are 26-adjacent but not 18-adja
cent. We say they are strictly 18-adjacent if they are 18-adjacent but not 6-adjacent.

For  respectively , the -neighbors of a point  are the  points tha

are -adjacent to . The set of  neighbors to a point defines its -neighborhood.

A -path is an ordered set of points such that consecutive pairs are -adjacent. A se
points is said to be -connected if there exists an -path in  between every pair of points

. In , a 4-connected set is also 8-connected. We say a set is strictly 8-connected if there
exists a pair of points in that set that can be linked by an 8-path but not by a 4-path conta
the set. Similarly in , a 6-connected set is also 18-connected and 26-connected. We s
a set is strictly 18-connected (resp. strictly 26-connected) when there exists a pair of points i
the set that can be linked by an 18-path (resp. 26-path) but not by a 6-path (resp. an 1
entirely contained in the set.

2.1.2. Discrete tunnels

Let  be a subset of a set of points , if  is not -connected then  is said to be -sep-
arating in  [11]. If  is -separating but not -separating for  then  is said to h

-tunnels (Figure 2-4). If  is 26-separating then it is said to be tunnel-free. Discrete tun
in curves and surfaces are often a problem since they tend to defeat the Jordan theorem

Figure 2-3: Discrete adjacencies in 3D

P1 x1 y1 z1, ,( ) P2 x2 y2 z2, ,( ) ¾3

max x2 x1– y2 y1– z2 z1–, ,( ) 1≤

x2 x1– y2 y1– z2 z1–+ + 1≤

6-adjacency 18-adjacency 26-adjacency

n 4 6,( )= 6 18 26, ,( ) n P n

n P n n

n n S
n n S

S ¾2

¾3
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X S n m m n> S
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2.1.3. The Jordan theorem for discrete curves

In , the Jordan theorem is a fundamental theorem which states that any simple closed curve
divides  into two disjoint connected components, one finite is called the interior of the curve,
the other, infinite, is called the exterior of the curve (Figure 2-5).

A discrete -simple closed curve is defined as a connected set  of points each of which is
-adjacent to exactly two other points in the set. In , the Jordan theorem still holds provided

two different types of connectivity are considered for the curve and the background, otherwise
contradictions appear [35]. One can see for instance in the first figure of Figure 2-6 that if 8-

connectivity was to be considered for both the curve and the background then the white and gray
voxel sets which are the expected exterior and interior of the curve would be connected, which
is in contradiction with the theorem. Now if 8-connectivity is considered for the black points

Figure 2-4: A 18-tunnel through a piece of a 6-separating surface

Figure 2-5: The Jordan theorem in 

Figure 2-6: The Jordan theorem in 

¶2

¶2

Interior

Exterior

Simple closed
curve

¶2

n S
n ¾2

8-connected boundary
4-connected interior

4-connected boundary
8-connected interior

¾2
Page 29



2D Digital Lines and Planes
Digital straight lines (previous art)2

. It
defining the curve and 4-connectivity for the other points, then the sets defined by gray and
white pixels are disjoint and thus one can speak of interior and exterior of the curve in the sense
of the Jordan theorem.

Unfortunately this result is very hard to extend to  and today researchers still spend a lot
of energy in finding a satisfactory general framework for discrete surfaces in which the Jordan
theorem holds. Some demonstrations have been made though by Herman [30], Malgouyres [42]
and others (references in [20]). Unfortunately those demonstrations rely more or less on ad hoc
definitions of surfaces which clearly shows that the real problem resides in the very definition
of a discrete surface. Indeed, it has been shown that unlike continuous simple closed surfaces,
thin discrete simple closed surfaces verifying the Jordan theorem cannot be characterized
locally [5], therefore a variety of approaches for defining surfaces have been made, some of
which are compatible with the Jordan theorem: a voxel approach, where a surface is defined as
a set of faces (surfels) between adjacent pairs of voxels [30], a combinatorial approach, where
a surface is defined as a combinatorial manifold [20], a graph-theoretical approach where a sur-
face is defined as a thin set of points linked by adjacency relations and additional properties [5],
[42].

2.2. Digital straight lines (previous art)

2.2.1. Introduction and definition

Straight lines are the most fundamental objects in computer graphics just as they are in euclid-
ean geometry. It is no surprise then that many researchers focused some interest on their study.
Digital lines are indeed a fascinating subject as, despite their apparent simplicity, they carry
much of the still somewhat mysterious relations between the discrete and continuous.

The common way of thinking geometry is so deeply pervaded by continuous concepts that the
most intuitive approach to digital straight lines is naturally, to consider them as approximations
of euclidean lines. This first approach is fundamental and was widely investigated [2], [36],
[48]. It lead for instance, to the first drawing algorithms of lines on a computer display [6]. Thus
the very first definitions of digital straight line segments were actually algorithmic rather than
properly geometric. Rosenfeld first formulated the fundamental chord property which charac-
terizes digital straight line segments [48] and deduced their first important intrinsic properties.
Most of this early work however remained strongly rooted in euclidean geometry. 

Relying on continuous geometry to study digital lines is certainly reassuring and leads to
many interesting results but it also uncovers many problems (e.g., the intersection of lines) and
actually somewhat neglects the fundamental nature of digital lines. An alternative approach is
to consider digital lines for what they are, i.e., discrete sets of discrete points, define them as
such and deduce properties from this definition. Among the works in that direction, the arith-
metic definition proposed by Reveillès [46] is certainly the most fruitful and promising

¾3
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achieves a major step in the synthesis of existing definitions into a remarkably simple and rich
formulation.

Definition 2-1. We call planar digital straight line a subset of ¾2 described by a diophantine
equation of the following form :

(2-4)

where all parameters are integers.  defines the direction of the line,  defines its

affine offset while  is called arithmetical thickness. 

When considered in  instead of , Equation 2-4 defines a continuous strip of width (mea-

sured orthogonally to the direction of the strip)  which can be thought of as the

continuous counterpart of the naive digital line. This offers another point of view on digital lines
where those are seen as sets of integer points contained in a continuous strip as illustrated in
Figure 2-7.

Figure 2-7: The digital line 

A digital line can be seen as either a set of pixels or equivalently as a set of integer
points comprised between two real euclidean lines. The same line is shown here using
both representations.

D a b γ ρ, , ,( ) x y,( ) ¾
2∈ γ ax by+ γ ρ+<≤⁄{ }=

a b,( ) γ
ρ

x

y x

y

3x-5y=1

3x-5y=-4
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---------------------=
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2.2.2. Naive digital lines

A particularly interesting subset of digital lines consists of those verifying :

(2-5)

which are called naive digital lines and have exactly the same structure as the sets drawn by the
classical Bresenham algorithm for lines [6]. The most important property of naive lines is strict
8-connectivity.

Naive digital lines are also “functional” along one of the main axes. For instance let us
pose that , then for any value of  there is one single value of  such that 

belongs to the naive digital line , i.e.,  can be written as a function of , henc
term “functional”. More precisely, in that case:

(2-6)

This fact can be further understood by noticing that in the case of naive digital lines suc

, the height of the continuous strip defined in  by Equation 2-5 is exactly 1, w
guarantees that above any integer abscissa there is one and one only integer point con
that continuous strip.

Naturally the previous result still holds by symmetry if . In that case the naive di

line is functional along , meaning that  can be written as a function of .

Figure 2-8: Digitization by truncation vs. digitization by closest integer

ρ max a b,( )=

D a b γ, ,( ) x y,( ) ¾
2∈ γ ax by+ γ max a b,( )+<≤⁄{ }=
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--------------–=
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 is the digitization by truncation of the ordinary euclidean line of equation

 where x, y, z are real numbers and a, b and γ are integers, while its digitization by

the closest integer point is given by  (Figure 2-8).

2.3. Digital planes (previous art)

2.3.1. Introduction and definition

One of the particularly interesting aspects of Definition 2-1 is that it extends particularly well
to describe digital planes [16]. Therefore digital planes share properties similar to those of dig-
ital lines.

Definition 2-2. We call digital plane a subset of  described by a diophantine equation of
the following form :

(2-7)

 defines the normal direction of the plane,  defines its affine offset

while  is called arithmetical thickness.

Figure 2-9: A naive digital plane
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2.3.2. Naive digital planes

As for digital lines, a particularly interesting subset of digital planes consists of those verifying
:

(2-8)

which are called naive digital planes. Those planes are 18-connected and have no holes for
6-connectivity. One of the most fundamental properties of digital planes is that they are
“functional” along the main direction of their normal, i.e., if  then f

each  there exists a single  such that  belongs to the digital plane. That is,

be expressed as a function of , which writes:

(2-9)

 is the digitization by truncation of the ordinary euclidean plane of equa

 where x, y, z are real numbers and a, b and  are integers.  also

represents the digitization by the closest integer point of the plane  w

, , ,  and .

2.4. Basic properties of digital lines and planes (previous art)

Various properties of digital lines can be deduced from Definition 2-1 [46], to summar
few:

• The structure of a digital line of direction (a,b) with  and  is 

described by the modular sequence . The structure of a digital line is 

therefore -periodic and this modular sequence describes the length of the platea
the line and their sequence.

• Two digital lines having the same direction and the same arithmetical thickness ar
equivalent, i.e., are identical within translation

• Two digital lines having the same bounds are homologous, i.e., one can be transfo
into the other by a unimodular matrix (which represents a sequence of shearing 
operations)

• The thickness parameter  controls the connectivity of the line :

w : the line is disconnected

w : the line is strictly 8-connected

ρ max a b c, ,( )=

P a b c γ, , ,( ) x y z, ,( ) ¾
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c
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w : the line is strictly 4-connected

w : the line is thick

Figure 2-10: Connectivity vs. arithmetical thickness of digital lines
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These properties also apply to digital planes. In particular, in the case of a digital plane:

• The thickness parameter ρ controls the connectivity of the plane :
w : the plane has 6-holes

w : the plane is strictly 18-connected and has no 6-holes

w : the plane is 6-connected

w : the plane is thick

2.5. New results about digital lines

The following sections present original results about problems related to 2D digital lines
first one deals with the intersection of 2D digital lines, generalizing a result previously e
lished by Reveillès [46]. Such a generalization is necessary for practical implementations
generally need to avoid restrictions on the directions of the lines. The algorithm that com
the intersection of digital lines is fundamental, for instance, it constitutes the basis of a 
parallelogram drawing algorithm. 

The second result introduced in this section links the affine offset parameter  of the eq
of a digital line to a shift of index in the canonical combinatorial pattern of the line. Inde
has been shown that the combinatorial structure of a naive line, i.e., its sequence of ste
plateaux, depends only on its direction [46]. However varying the affine offset induces a
in the canonical pattern. The relation between these two values can be used for insta
devise an optimized naive digital line drawing algorithm. 

2.5.1. Intersection of 2D digital lines with non prime direction coefficients

Most of the time a requirement is made on the direction of digital lines that the coefficien
mutually prime. Indeed this is not much of a restriction from a theoretical point of view
greatly simplifies the calculations but it also happens to be somewhat inconvenient in pr
when one tries to implement algorithms. The intersection of 2D digital lines has been s
by Reveillès [46] with such restrictions, here we extend the results to digital lines of arb
rational direction. The intersection of discrete lines can be very complex and in particular 
not be connected.

Let  and  be two digital lines. We assume that the lines are
parallel: . In order to find their intersection we need to solve the following equa
system:

(2-10)

ρ max a b, c,( )<
ρ max a b c, ,( )=

ρ a b c+ +=

ρ a b c+ +>

γ

D1 a b γ ρ, , ,( ) D2 c d µ ν, , ,( )
ad bc– 0≠

γ ax by+ γ ρ+<≤
µ cx dy+ µ ν+<≤



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nd
Let ,  and . Then Equation 2-10 can be rewritten as (using
matrix notation):

(2-11)

Since  and  are mutually prime, there exist  and  such that .

We introduce  and the change of coordinates . Equation 2-11

becomes

(2-12)

Let  and . The solution for the intersection can be computed with

a double loop in  and  such that 

(2-13)

The expression for the boundaries of  depends on the sign of :

•

(2-14)

•

(2-15)

Example. Let us apply these results to find the intersection of  a

:

(2-16)
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Hence , furthermore  and therefore, the value of  is given by
Equation 2-15:

(2-17)

Finally, applying the unimodular matrix  on  yields the final result shown

in Figure 2-11 and Figure 2-12.

2.5.2. Index shift in the canonical pattern of a 2D discrete line

As previously mentioned (Section 2.4) a 2D digital line of equation  such
that  and  is -periodic, i.e. it can be built by repeating periodically a
pattern of  pixels (Figure 2-13). An optimized line drawing algorithm can take advantage of
that result by computing the canonical pattern once and then repeating it.

It is easy to show that the digital line pattern depends only on the direction coefficients
. Varying the affine offset  has no influence on the line pattern since digital lines that

have the same direction but different affine offsets are identical within integer translation (Fig-
ures 2-13 and 2-14). Thus the line pattern can be calculated independently of the affine offset.

X 3 4 5 6 7 8 9
Y 0 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8
x -6 -1 4 -3 2 7 0 5 10 3 8 13 6 11 16 9 14 19 12 17 22
y -3 -1 1 -2 0 2 -1 1 3 0 2 4 1 3 5 2 4 6 3 5 7

Figure 2-11: Intersection of  and 

Figure 2-12: Intersection of  and 
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We define the canonical pattern of a direction  as the sequence  for ,

where 

(2-18)

To draw a digital line  starting at , a line drawing algorithm using

the previous optimization needs to determine the shift in the canonical pattern induced by .

Figure 2-14 shows, for instance, that at  the index shift of  in the canonical

pattern for direction  is 1.

Theorem 2-2.  can be drawn by shifting the canonical pattern for direction

  units forward at  where

(2-19)

Figure 2-13: The canonical pattern of 

Figure 2-14:  is equal to  within translation
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Proof. The structure of the canonical pattern is controlled by the modular sequence 

while the structure of  is described by , thus we are looking for the shift

 such that:

(2-20)

Since  there exist  such that . Hence we can write:

(2-21)
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3 Theoretical Aspects of 3D Digital Lines

In this chapter, a new approach to the study and definition of 3D digital lines is proposed. This
approach based on the properties of the rational lattice generated from the projection of  onto
an euclidean plane of rational direction opens the door to interesting new results and properties of
digital lines.

3.1. Introduction

Research work about 3D digital lines has followed two different paths, much like 2D digital
lines. The first one focused on algorithmics while the second one investigated more theoretical
results such as the geometrical and topological properties of 3D discrete lines. 

Especially because of the increasing popularity of ray tracing for the rendering of 3D scenes
and the development of optimization techniques like space partitioning into voxels, the need for
3D line drawing algorithms has become urgent. The first attempts derived directly from euclid-
ean geometry with little or no attention paid to the discrete nature and properties of the objects
being built [2]. Then the classical 2D line drawing algorithms such as Bresenham’s
extended to the 3D case by considering two projections of the line onto the main coord
planes [32]. This approach which brought a significant improvement over the previous
rithms by using integer arithmetic, has proved to be particularly convenient and remains 
the most commonly used even though more recent algorithms such as Cohen and Kau
Tripod Algorithm have introduced a new efficient way of drawing 6-connected 3D di
lines [13].

Regarding the theoretical aspects, early research tried to extend the knowledge and the
results on 2D digital lines to investigate the structure and properties of 3D digital lines
Kim for instance showed that one could characterize a 3D digital line thanks to the chord
erty applied to its projections onto the coordinate planes [33]. She also demonstrated t
chord property does not hold for the digital line itself, thus showing that the mathematical
of discrete geometric objects becomes much more intricate in 3D. However this definit
3D digital lines using the 2D digital lines of closest integer points in two of the projections
several limitations: 

• the discrete topology of this 3D digital line notion is not clear, 

• its third projection is, generally, not the closest set of points of the third euclidean 
projection, 

• if we consider a family of parallel euclidean lines, we do not know how many 
combinatorially distinct digital structures will be built by this process, 
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• and above all the set of voxels defined in this way is not the set of closest points o
given 3D euclidean line (see Figure 3-1).

These questions are only the simplest ones. Many others could be asked such as: the
dence on the choice of the projections, the intersections with digital planes, the interse
between 3D digital lines, ... Thus a new approach is needed. Therefore we would like to p
here a new definition of 3D digital lines relying on subgroups of , whose main adva
over the former one is its ability to convert any practical question into rigorous algebraic t
In particular, we obtain a complete description of the topology of these lines and a conditi
the third projection being a 2D digital line as well as a classification of digital lines of the 
direction into classes of equivalent combinatorial structure. The approach presented here
new perspectives and looks particularly promising, however its in-depth exploitation w
have fallen much beyond the scope of this particular work and the results we present her
be considered more as hints towards new directions for the study of digital lines rathe
complete results per se.

In the second part of this section we use the arithmetical definition of 3D digital lines de
from this approach to study the intersection between a digital line or a set of adjacent 
lines and a digital plane.

3.2. The projection lattice of the integers along a rational direction

The general idea behind our approach consists in studying the properties of the rationa
generated on an euclidean plane by the orthogonal projection of  onto that plane. For th

Figure 3-1: Usual 3D line vs. best integer approximation

The graphics on the left shows a digital 3D line built in the usual way using the
Bresenham’s algorithm for two of its projections. The graphics on the right shows the
discrete line built with the integer points that are closest to the corresponding euclidian
line. The red circles shows where a difference appears.

Usual 3D Line Best Integer Approximation

Direction
(13,14,15)
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of clarity in the demonstrations, we present the definition with a restriction to directions given
by integer vectors  satisfying the hypotheses of Equation 2-3.

Let us consider the euclidean plane , normal to  whose equation is 

(3-1)

and the orthogonal projection  of  onto :

(3-2)

It is easy to prove that the image

(3-3)

is a discrete and rational lattice.

An important consequence results from  discreteness: bounded subsets of plane  contain

only a finite numbers of points of . If  is such a bounded set, its inverse image  is
made of a finite number of fibers all of which are in one to one correspondence with the
subgroup

(3-4)

generated by vector  (see Figure 3-2). More precisely for any point  we know

that its fiber  is equal, within translation, to .

Figure 3-2: Projection of  onto a plane along a rational direction

Brown dots are the projections of integer points of  and make up the lattice . Two

fibers of  are shown.

a b c, ,( )

P a b c, ,( )

ax by cz+ + 0=

π ¾3 P
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L π ¾3( )=

x

y

z

P:ax by cz+ + 0=

L

a b c, ,( )

¾3

¾3 L

¾3

L P

L B π 1– B( )

π 1– 0( ) k a b c, ,( )⋅ k ¾∈{ }=

a b c, ,( ) x L∈
π 1– x( ) π 1– 0( )
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 what
In this way we reduce the study of 3D digital lines to the study of the 2D lattice . Lattices

(or -modules) are structures which are, at the same time, similar and distinct from vector
spaces. The reader will find their properties in any algebra treatise [38]. 

We are more precisely interested in the study of the subset  of  contained in a fundamental

domain of a sub-lattice  of . We show hereafter that the parameterization of  and  can
be made extremely simple thus leading to a particularly interesting representation of digital 3D
lines. We show also that we can, among others, read the topology of the line and recover usual
algorithms from this representation.

3.2.1. Simplification of triply generated two dimensional lattices

The main difficulty concerning -modules (or lattices or free abelian groups) is that one can
find free families of vectors whose cardinal is equal to the dimension of the ambient space and

which do not generate this space. One such example is given by the set  of ,

which is free, has cardinal two and is not generator of . We can see for instance that vector

 cannot be represented as a linear combination, with integer coefficients, of the given
vectors.

Let us introduce the following definitions:

• If  are integer vectors of ,  will denote the lattice 

generated by these vectors. We shall restrict to  and  and say, respect
in these cases that the lattices are doubly or triply generated.

• We shall denote any fundamental domain of  by  (for parallelogram)

and by  the set of points of  contained in , (keep in mind that th

points  and  are not members of .

• We also denote by  the cardinal of .

Our goal is parameterize in the most simple way the set . Let us start with a 2D vers

this problem, that is we suppose vectors  are in .

 and  either generate a rank one subgroup, if 

a rank two subgroup of  otherwise. We suppose this last hypothesis is satisfied in
follows.

L

¾

� L

S L L �

¾

1 0,( ) 3 2,( ),{ } ¾2

¾2

2 1,( )

V1 V2 … Vi, , , ¾3 L V1 V2 … Vi, , ,( )

i 2= i 3=

L V1 V2,( ) Par

� L V1 V2 V3, ,( ) Par

V1 V2, V1 V2+ �

ν �( ) �

�

V1 V2 V3, , ¾2

V1 x1 y1,( )= V2 x2 y2,( )=
x1 x2

y1 y2 
 
 

det 0=

¾2
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If  is a third vector of  we also suppose that: 

•  for  and that

• All three determinants ,  and  are non zero and 

that the first one is positive

With these hypotheses the lattice  is a rank two submodule of  and w

interested, as explained above, in the set  of its points contained in a fundamental d

, of .

Obviously the parallelogram  and its translations by the vectors 

, induce a tiling of  (see Figure 3-3). So any integer point of  belonging to

such tile has a reduction (homologous point) in . Thus, after reduction, the sequence 

 gives a subset of the integer points of ; this inclusion is generally strict. In the

remaining the following two notations will be used for this reduction modulo : ei

“mod “ or “mod “.

The following lemma results immediately.

Lemma 3-1. The set  is given by the reduction modulo  of the integer multiples of

vector , that is of :

(3-5)

Figure 3-3: A doubly generated lattice and the multiples of a third vector

The integer vectors  and  induce a tiling of . Multiples of , shown as
brown dots, can be reduced to the fundamental parallelogram (hatched area) and
therefore describe a subset of the points in that parallelogram.

V3 x3 y3,( )= ¾2

xi yi,( )gcd 1= i 1 2 3, ,=

V1 V2,( )det V1 V3,( )det V3 V2,( )det

L V1 V2 V3, ,( ) ¾2

�

Par L V1 V2,( )

Par k1 V1⋅ k2 V2⋅+

k1 k2, ¾∈ ¾2 ¾2

Par k V3⋅

k ¾∈ Par

Par

Par V1 V2,{ }

V1

V2 V3

V1 V2 ¾2 V3

� Par

V3 k V3⋅ k ¾∈{ }

� k V3⋅ k ¾∈{ } V1 V2,{ }mod=
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It is well known that the surface of  is given by , this quantity
 also corresponds to the number of integer points contained in , i.e.

. So the cardinal of  is bounded by . Moreover there exists one integer value 
such that  belongs to the lattice generated by  and . This comes from the following
observation: as  is finite, there must be two distinct integer values  and  such that

 and  have the same reduction mod . Thus for ,  is con-
gruent to the null vector:

(3-6)

which is equivalent to this assertion

It can then be deduced that there exists a smallest non-null integer value, still denoted , such
that  belongs to the lattice generated by  and , which can be written as

. 

Lemma 3-2. The smallest non-null integer number  such that  is
exactly the cardinal of . 

Proof. Let us consider the elements  of , where . These
elements are distinct for if we suppose  then we would have

 which is in contradiction with our hypothesis stating that  is the
smallest non-null integer such that . Therefore . Moreover
for any integer  we have 

(3-7)

Hence any  with  reduces to one of  within modulo  which
allows us to conclude: .n

We introduced above the determinant:  (which can be supposed to be strictly
positive). Let us also consider the values of the two other determinants reduced modulo :

 and 

With a little knowledge from group theory about elements order, we can deduce that

Lemma 3-3. The cardinal of ,  can be expressed as

(3-8)
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q
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k
---

 
 
 

+
 
 
 
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Proof. An arbitrary euclidean vector  can be expressed in the base  as

(3-9)

 is congruent to the null vector to modulus  if it can be written as a linear

combination of  and  with integer coefficients. Hence  iff both

 and  are integers. This condition amounts to  and  both

being multiples of :

(3-10)

Simplifying by  and , this equation becomes

(3-11)

 and  being mutually prime as well as  and  we

deduce that  must be a multiple of both  and  which proves the

lemma.n

The set  can be constructed in  steps, each one involving a mod  reduction.

The components  of the mod  reduction of an arbitrary vector  can be

expressed as:

(3-12)

Even if this formula is fine, we will look for a yet simpler and faster way of generating the set
. In fact we have the following lemma, where  are as above. 
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Lemma 3-4. There is an integer  matrix  which maps the lattice 

bijectively onto .

Proof. Using the classical identity for euclidean division

(3-13)

 the preceding identity can be simplified as follows:

(3-14)

But this can be written in matrix notation as

(3-15)

revealing the rational unimodular matrix 

(3-16)

We can then transform the situation and map the lattice  to another lattice with

the help of the matrix .

In the case where  and  the numbers  and  become

respectively the values  and  already introduced. Operator  maps  bijectively

to the subgroup  and the lattice  to the lattice generated

by , which is the assertion of Lemma 3-4. n
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The lattice  is doubly periodic of periods  and . Through  the set  is

mapped to the modular sequence

(3-17)

which can be written also as

(3-18)

Thus the complexity in generating the set  is reduced to the computation of two modular
sequences, which can be done with additions and comparisons only, avoiding divisions. This
can even be reduced once more by introducing the particular value of , say , for which

(3-19)

For this value of , the other sequence is equal to , that we shall denote . Obvi-

ously the set of points  can be built by the sequence

(3-20)

which now needs only one modular computation for each step. Finally, with the former
notations, we obtain:

Theorem 3-1. The set  can be built in  computations of a

modular arithmetical sequence of type 

3.3. Defining 3D digital lines

The lattice  introduced in section 3.2 is a rational lattice contained in the plane

. It is generated by the three rational vectors ,

 and , where  is the orthogonal projection on . 
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These vectors can be easily written in terms of  and :

(3-21)

As these vectors are coplanar, we are in a situation almost similar to that of Section 3.2.1. To

reduce it exactly to this case, we just have to clear out the denominator . The lattice generated

by  and  is a rank two group isomorphic to  of section 3.2.1. The only

difference between both situations is that vectors , ,  now belong to 
instead of , but all the preceding results go through, with the obvious modifications.

Theorem 3-2. There is a  rational matrix , which maps the lattice  bijectively on

the sub-lattice  of . This operator maps  fibers on lines which
project on direction .

This image  is called the simplification (or reduction) of  and it is denoted by .

In the same way image  is denoted  and image  is denoted by . Of course

 is the new tile of the simplified lattice. 

Figure 3-4: The lattice  as projection of the fundamental basis

The figure shows the fundamental basis  of , its projection 

on a plane  and the lattice  (brown dots).
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Proof. The projection  is not invertible, but we can still find operators which are almost

inverses of it. (The map  being a fibration, such inverses are usually called sections of ).
A possible section is given by the mapping

(3-22)

As  is the operator defined by

(3-23)

its matrix (still denoted ) is

(3-24)

Thus our problem is to find the inverse of the matrix :

(3-25)

A simple computation gives

(3-26)
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If we let  and evaluate the images of ,  and  by  we respectively find

the vectors

(3-27)

This proves that the operator  bijectively maps  on the integer lattice

. We also remark that this last one is the same as the lattice

. n

By definition (see Section 3.2), points of  are the projections of  fibers. In this sense the

image  can be seen as the feet of all these fibers. But this strict planar interpretation is not the
only one which can be deduced from the preceding computations. The most striking is the result

of the computation of , because it proves that the lines directed by  are

actually the projections of the images of the fibers by operator , on the  plane. Besides,
as , the points of the form , where , represent the sec-
tions of these fibers by the horizontal planes .

Moreover the set  of points of  contained in the parallelogram built on 
and  is mapped, by  on the set  of points of the 2D lattice

 contained in the square  which is
much simpler to study.

Of course, since  and , the respective projections of  and , are mapped
onto  and , the unit cubes of  can be seen as the tiling induced by

.

Finally we obtain the following:

The simplified lattice  gives the intersection scheme of the euclidean line, directed by

, with all the voxels of space.

A closer look at Figure 3-5 reveals this nice interpretation. The medium-sized and bigger

points in Figure 3-5 represent the projection lattice of  along the direction . On this
figure, the line that is drawn is the image of the fiber of the projection that goes through the ori-
gin. The points of the form  on this line are the sections of the fiber by the horizontal

planes . The horizontal lines  and the vertical lines  are the respective images of the

vertical planes  and . Thus by considering the positions of the points  for
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 we can say that the euclidean line directed by  goes through the ori-

gin, then cuts the plane  in the square , the planes  and  in the

square , the plane  in the square , ...

From this interpretation of the projection lattice we can derive a first notion of a 3D digital
line:

Definition 3-1. The naive digital 3D line through the origin, directed by , (where

, , is given by the parametrization

(3-28)

Figure 3-5: The reduction of the lattice  associated to , , 

The smallest points are integer points of , the medium ones are the points of ,

while the largest ones belong to the lattice . The set  is made of the

medium points contained in the square . The points located on

the line of slope , are the first multiples of the third vector . Their

reduction modulo  give some of the points of . 
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or equivalently

(3-29)

It is denoted by .

We remark immediately that this notion is identical with the usual 3D discrete line built by the
double 2D Bresenham algorithm [32] and whose arithmetic formulation based on the definition
of 2D digital lines (Section 2-1) was given by Debled-Rennesson [15]. The set made by the feet
of the fibers forming  is exactly .

When considered in  instead of , Equation 3-29 defines a generalized continuous cyl-
inder having for intersection with the plane xOy (main plane orthogonal to the axis Oz along
which the direction of the line has its biggest coordinate) a square of side 1. This provides
another characterization of a digital 3D line:

Proposition 3-1. The set of integer points contained in a continuous cylinder of axis 

with  and whose intersection with the main plane  is a unit square, is a
digital 3D line.

Figure 3-6: The digital line D 5 9 17, ,( )

0 cx– az+ c<≤
0 cy– bz+ c<≤




D a b c, ,( )

D a b c, ,( ) �

¶3 ¾3

a b c, ,( )
0 a≤ b c< < xOy
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3.4. Reading the topology of a 3D line on the projection lattice

From the previous interpretation of the reduced projection lattice , we can see that the only
steps between two consecutive points of the fiber that generate an  increment are those that
cross one of the vertical lines , i.e., those taken from points close enough to a a vertical line

. When reduced to modulo  these points correspond to the points in a vertical strip
. Similarly the only steps that generate a  increment are taken from points

an horizontal strip  and the only points that generate both  and  increments
at the same time are those take from points in the common region . Thus

the fundamental square  of lattice  can be divided
into four zones that we will denote as (1), (2), (3) and (4), see Figure 3-7. This gives a partition

of  which governs the topology of the line .

We can see that along a naive 3D digital line of direction  as previously defined there
are three types of adjacency only:

• strict 6-adjacency when two voxels share one common face. 6-adjacency occurs al
the -axis only, i.e. shared faces are always parallel to the  coordinate plane.
(Zone (1))

• strict 18-adjacency or edge-adjacency when two voxels share one common edge. Thi
type of adjacency occurs along the -axis, (when the shared edge is parallel to th

Figure 3-7: The four zones of the lattice associated with 
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axis) or along the -axis (when the shared edge is parallel to the -axis). (Zones (2) 
and (3)).

• strict 26-adjacency or corner-adjacency when two voxels share one common vertex. 
This can occur for two of the eight vertices of a voxel only: the closest and the furt
from the origin. (Zone (4)).

We immediately deduce the following results from our description of 3D digital lines.

Proposition 3-2. The number of face-adjacencies in one period of a naive 3D digital line of

direction  is equal to the number of points of  contained in the rectangle

 (zone (1)).

Proposition 3-3. The number of edge-adjacencies along the -axis in one period of a naive

3D digital line of direction  is equal to the number of points of  contained in the

rectangle  (zone (2)).

Proposition 3-4. The number of edge-adjacencies along the -axis in one period of a naive

3D digital line of direction  is equal to the number of points of  contained in the

rectangle  (zone (3)).

Proposition 3-5. The number of corner-adjacencies in one period of a naive 3D digital line

of direction  is equal to the number of points of  contained in the rectangle

 (zone (4)).

Theorem 3-3. The three projections onto the main planes (xOy) (yOz) and (xOz) of the naive

3D digital line  are naive 2D digital lines iff 

3.5. Combinatorially distinct 3D lines

Definition 3-1 shows that our approach contains the former classical digital lines, bu
many others that we can build by an extension of the previous notion. This situation is s
to that of 2D lines [46]. Up to this point we have defined and built 3D digital lines from
points of  contained in one of the fundamental domains of . In fac
can also consider the collections of fibers whose feet are contained in other fundam
domains  of . We can prove that each time  is 8-connected for the topology of the
minimal basis of  then  is a valuable notion of a 3D digital line.

We can extend the idea even further and consider domains over  other than funda
domains of . An especially interesting case consists of fundamental domains of la
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 generated from integer affine translations of . As the fundamental domain  of 
contains  integer points, there exists  such lattices , . For
each possible integer translation of vector  of  it is possible to build a new 3D digital
line leading to  different digital lines of direction . Actually these  different lines
can be grouped into  classes of  digital lines having an equivalent structure within integer 3D
translation. Thus given an integer direction  there exist  combinatorially distinct pos-
sible structures of the corresponding digital line. This is due to the fact that any fundamental
domain of  has an integer area of  and tiles  into  subtiles (Figure 3-8 and Figure 3-9).

This relation between the simplified lattice  and the topological structure of 3D digital lines
offers a new interesting point of view. It could certainly lead to a method for determining which
line among the combinatorial variations is the closest digital connected set to a n euclidean line
though this remains to be done.

3.6. Intersecting discrete 3D lines and planes

We now apply Definition 3-1 to a particular problem: determining the intersection of a digital
3D line and a digital plane. Section 2.5.1 has shown that the intersection of digital sets can be
particularly complex even though the intersection of the euclidean counterpart is very simple.
Intersecting a line and a plane is a very basic operation in computer graphics and is used in all

Figure 3-8: Reading the structure of combinatorially distinct lines from 

Two affine translations of the fundamental domain of  and the corresponding 3D

digital lines. The hatched area represents the fundamental domain of  which has an

area of .
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ray-casting algorithms. Though the vast majority of ray-tracing implementations involves con-
tinuous models and thus euclidean lines and planes, some attempts at a full discrete version of
the ray tracing algorithm have been made especially by Yagel, Cohen an Kaufman [57]. In such
an algorithm intersecting a discrete ray (3D digital line) with the surface of an object (which
may be represented by a surface mesh, i.e. pieces of digital planes assembled together) is the
core operation. As such, it is the most consuming part and most of the effort is generally put in
accelerating that calculation sometimes neglecting some theoretical aspects. The following
study on the other hand, tries to emphasize the precision of the discrete intersection calculation
from a theoretical point of view and describes the exact set of discrete points that make up the
intersection. This could find for instance a possible application in the anti-aliasing of ray-traced
images following ideas developed by Amanatides [1].

Let us consider the naive digital line  with a definition generalizing the one
given in Definition 3-1:

(3-30)

where all parameters are integers and the direction  verifies the usual restrictions, i.e.

,  and  are mutually prime and strictly positive (see Section 2.1). As already mentioned a

digital line of direction  defined in this way can be seen as the intersection of two digital

planes orthogonal to the plane of normal  and respectively to the  and 
main coordinate planes. Therefore, the intersection of a naive 3D digital line with a digital plane
is in fact the intersection of three digital planes which is similar to the equivalent continuous
problem.

Figure 3-9: Combinatorial variations of 

The 5 combinatorially distinct possible structures of the digital line of direction
(3,4,5). Two periods are represented in each example.
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We want to determine the intersection of  with the digital plane
 defined as in Definition 2-2 with the additional restriction . The

quantity being non null avoids the degenerated cases where the line and plane have no intersec-
tion or the line is contained in the plane. The expression being positive can always be guaranteed
since considering one of the opposite vectors  or  does not modify the
intersection. 

The following matricial system defines this intersection:

(3-31)

Of course this system must be solved in . The key idea is to find an appropriate unimodular
matrix  (i.e. having a determinant equal to 1) that makes the system easier to solve. The
important fact concerning  is that it is a bijective transform of . In other words we want
to map the intersection points from the original space where coordinates are denoted 
into another one where they are denoted  and where the set of points of the intersection
appears more regular.

Let  and  two pairs of integers such that

(3-32)

Figure 3-10: Intersection of  and 
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and

(3-33)

We find successively:

(3-34)

We introduce the integers ,  and  to simplify the notations:

(3-35)

we have then

(3-36)

In addition we require that  and  be relatively prime which ensures that there exist 
such as:

(3-37)

Then we can write

(3-38)
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and finally we get 

(3-39)

 transforms Equation 3-31 into

(3-40)

with

(3-41)

Since the scalar product  is strictly positive according to our initial hypoth-
eses, we can rewrite Equation 3-40 as the following expression:

(3-42)

from which we can immediately deduce the following intersection scanning algorithm:

where  denotes the quantity .

Equation 3-42 shows that 

•  steps through  values 

• for each of  there is a unique value of 

• for each value of  there are:
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w  values for  if 

w  values for  if 

Proposition 3-6 follows immediately:

Proposition 3-6. The intersection of a naive three-dimensional line  and a

digital plane  consists of  voxels with

(3-43)

The complexity of the algorithm to calculate the intersection between a 3D digital line and a
digital plane is  where  is the number of voxels contained in the intersection.

3.7. Incremental intersection of parallel adjacent 3D lines with a plane

For some common applications like parallel projections it may be necessary to compute the
intersection of a digital plane with a set of parallel adjacent digital lines. The classical approach
trying to calculate these intersections incrementally based on euclidean geometry and floating
point arithmetics is sensitive to error accumulation and may be tedious to adjust. On the other
hand, the simple algorithm presented previously has very interesting properties which offer a
particularly efficient solution to the problem and avoids numerical drifts. 

for  to  do {

if  then do

for  to  do 

PlotVoxel  

}

Figure 3-11: A digital line/plane intersection algorithm
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We shall carry the demonstration for a set of naive parallel digital lines adjacent along the -
axis. The problem being perfectly symmetrical, the results will be easily transposed to adja-
cency along the two other axes.

According to Equation 3-30, we define the naive 3D digital line of direction  going

through the integer point  as the subset of  verifying:

(3-44)

Assuming that the intersection between the line going through  and the plane
 is known, we want to determine the intersection of this plane with the line going

through . 

We denote with the x0 subscript, values related to the intersection with the line going through
 and with the x0+1 subscript, values related to the intersection with the line going

through . We also denote with  the following quantity 

which can assume only two values: 0 or 1.

A simple calculation making use Equations 3-39 to 3-41 yields:

(3-45)

where  represents the lower bound of the interval of possible values of  for a given 

(Equation 3-42).
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These results can be translated into the  space where they appear simpler:

(3-46)

Then we derive immediately from these equations the algorithm in Figure 3-12 and
Figure 3-13 which is presented without full optimization for the sake of clarity. The calculation

of consecutive intersections with adjacent lines involves only additions and a few tests. It is
therefore very efficient. 

3.8. Summary

The in-depth study of 3D digital lines is a largely open subject and few results are available.
Since the developments in this area of research are largely driven by the necessities of practical
applications, people generally focus on algorithmics more than on theoretical aspects. Even
though the third dimension makes the problem much more intricate, there exist promising new

Definitions and allocations
Define type Voxel as a record of 3 integers denoted x, y, z

nbInterMax=-div( ,f’)

Allocate interVox as a 2D Array of Voxel of size (c,nbInterMax)

Allocate  as an Array of Integer of size c

Allocate N as an Integer The number of intersection points for a given X 

Initialization for the first line
For i from 0 to c-1 do

X = a*z0 - c*x0 + i
Y = m*d’*X - div(b*u*X,c)

Z = -div(e’*Y - , f’)

(i) = mod(e’*Y - , f’)

If (i) + mod(- ,f’) >= f’ then

N(i) = nbInterMax
Otherwise

N(i) = nbInterMax-1
For j from 0 to nbInterMax-1 do

interVox(i,j) = matrixVectorMultiply (U, Vector(X,Y,Z))
For j from 0 to N-1 do

PlotVoxel(interVox(i,j))

Figure 3-12: Incremental plane/multi-line intersection algorithm (initialization)
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approaches. Thus, using the projection of  onto an euclidean plane, we have shown that the
structure of a 3D digital line is in correspondence with the structure of a 2D integer lattice. This
approach considerably extends the classical notion based on 2D Bresenham lines and opens the
doors to new results. Among these we have presented a classification of lines of a given direc-
tion into classes of equivalent combinatorial structure and suggested that the same approach
could lead to a solution to the problem of the closest digital connected set to an euclidean line.

An algebraic definition, equivalent to the classical definition of 3D lines based 2D Bresenham
lines, can be deduced from our approach. We used it to solve the intersection between a 3D dig-
ital line and a digital plane. Unlike usual algorithms based on euclidean geometry that content
themselves with the integer point that is closer to the real intersection of the euclidean objects,
we are able to determine precisely in  time (  being the number of voxels in the intersec-
tion) the exact intersection between the digital line and plane, no matter how complex that
intersection is. Moreover, unlike algorithms based on continuous geometry which are very sen-
sitive to error accumulation when extended to the incremental calculation of the intersections of
a plane with a series of parallel lines, our result can be generalized with no numerical drift to
solve the intersection of adjacent digital lines with the same digital plane in an incremental man-
ner also in  time but with much simpler calculations.

Loop for the remaining lines
For xOffset from 0 to numberOfLines-1 do

For i from 0 to c-1 do

If (i) + mod(d,f’) >= f’ then

(i) += mod(d,f’) - f’

For j from 0 to nbInterMax-1 do
interVox(i,j).x += - a*div(d,f’) - a + 1
interVox(i,j).y += - b*div(d,f’) - b
interVox(i,j).z += - c*div(d,f’) - b

Otherwise

(i) += mod(d,f’)

For j from 0 to nbInterMax-1 do
interVox(i,j).x += - a*div(d,f’) - a + 1
interVox(i,j).y += - b*div(d,f’) - b
interVox(i,j).z += - c*div(d,f’) - b

If (i) + mod(- ,f’) >= f’ then

N = nbInterMax
Otherwise

N = nbInterMax-1
For j from 0 to N-1 do

PlotVoxel(interVox(i,j))

Figure 3-13: Incremental plane/multi-line intersection algorithm (continuation)
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4 Digitization of Bézier Curves and Surfaces

This chapter introduces a new subdivision criterion leading to a scan-conversion algorithm of Béz-
ier curves and surface patches that is compatible with the results of discrete geometry and does n
rely on arbitrary precision constants.

4.1. Introduction

Bézier curves and patches are among the most fundamental primitives in computer g
and computer aided modeling. However, as they are defined by means of mathematica
tions, they are continuous objects which are not ideally suited for a computer represen
Discrete geometry aims at providing an equivalent of these mathematical objects in the
way as it has established formal definitions of digital lines and planes [46]. A first step to
this goal consists in developing a discretization algorithm of continuous Bézier curve
patches which would be consistent with existing results in discrete geometry. In this secti
propose such an algorithm. Our approach is based on a classical De Casteljau recursiv
vision algorithm but with a new flatness criterion based on the digital geometry of line
planes which guarantees a recursion depth close to optimal and appropriate geometric a
pological characteristics of the obtained discrete curve or surface with no need for ar
constants. Moreover, though we restrict our presentation here to the case of cubic Bézie
and patches for the sake of clarity, it is a remarkable fact that the approach is general en
be easily extended to higher degrees and dimensions.

4.2. Existing approaches to the problem

There exist essentially two different approaches to the scan-conversion of Bézier curv
surface patches [23]. The first one uses the parametric representation of the curve and e
repetitively the equations using forward differencing. Forward differencing is a fast and
cient technique which can be hardware accelerated. However it suffers from two 
drawbacks: first, it is a floating point algorithm subject to numerical drifts due to e
accumulation [8] and whose implementation requires great care and a register width dep
on the number of pixels to draw, furthermore there is naturally no linear relation betwee
parameter and the coordinates of the drawn points. Hence a regular subdivision of the pa
interval, though simple, is particularly inefficient since it can lead to many unneeded ev
tions drawing the same discrete point (if the parameter interval is too small) or holes in the
respectively patch (if the parameter interval is too big). Therefore refinements such as dy
step size adjustment are preferred [8, 21, 55]. But even in that case there is still a need fo
ing a parameter increment and criterions for deciding when to scale that incremen
Unfortunately all those criterions are based on some geometrical value (surface of a tr
distance between a point a line, angle) being “small” and thus require determining a tol
Page 67
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constant which, in practice is often chosen arbitrarily and whose relation to the sampling grid is
not clear. 

The second approach uses the De Casteljau algorithm [19], a stable and efficient method with
intrinsic adaptiveness to the curve. This method consists in recursively subdividing the control

polygon  into two sub-polygons  and 

(Figure 4-1) where the  are defined as weighted sums of polygon vertices: 

(4-1)

At each step the area of a new control polygon is smaller and hence is closer to the Bé
which remains invariant along the process. The recursion can be stopped when the contr
gon is close enough to the curve.  

Theorems exist that indicate when the maximum distance between the arc and the 
polygon is smaller than ε, based on the geometry of the sub-polygons [39, 56] or directly ba
on the initial control polygon and the recursion depth [34]. All of these results rely on the c
of an ad hoc constant ε which makes them quite unsatisfying from a theoretical point of vie
In what follows we show that we can eliminate the need for such a constant.

4.3. Polygonalization of cubic Bézier curves using digital lines

We denote with  the integer part of , i.e., the greatest integer smaller than r. Simi-

larly we denote with  the integer point of ¾2 (resp. ¾3) whose coordinates are the respective
integer parts of the coordinates of R∈¶2 (resp. ¶3). Let us consider an arc of integer endpoints

. We call axis of the arc, the line defined by its two endpoints. The vector  is the
direction of the arc. We also call width of the arc, the diameter of the smallest cylinder of axis

 that encompasses the whole arc. And similarly we call width of a set of points of ,

Figure 4-1: De Casteljau Subdivision

P0
0

P1
0

P2
0

P3
0, , ,( ) P0

0
P0

1
P0

2
P0

3, , ,( ) P0
3

P1
2

P2
1

P3
0, , ,( )

Pj
i

Pi
n 1+ αPi

n
1 α–( )Pi 1+

n
+= α 0 1,[ ]∈

P0
0

P1
0

P2
0

P3
0

P0
1

P0
2

P0
3

P1
1

P2
1P1

2

r[ ] r ¶∈
R[ ]

P Q,( ) PQ

P Q,( ) ¶2
Page 68



Digitization of Bézier Curves and Surfaces
Polygonalization of cubic Bézier curves using digital lines

¾

on
nt of

].
 with respect to the direction , the diameter of the narrowest cyl-

inder of axis  that encompasses E. This width  is given by:

(4-2)

where dia(A) for a subset X of  is defined as:

(4-3)

Theorem 4-1. Let C be a planar arc of integer endpoints P, Q and of width w. If

 then the best 8-connected integer approximation of C is a naive

digital straight line segment of direction PQ.

Proof. Equation 2-4 defines a naive digital line as the set of integer points contained in a
continuous strip of the euclidean plane. The width w of this euclidean strip relates to the

arithmetic thickness of the digital line ρ through the relation  (see

Section 2.2). It becomes clear then, that if C verifies  then it fits

within the real boundaries of a naive digital line and hence there cannot be a better integer
approximation to C than a naive digital straight line segment. n

Theorem 4-2. Let B be a planar cubic Bézier arc defined by its control polyg
, B can be optimally represented by a naive digital straight line segme

direction [P0P3] iff 

 (4-4)

where  and 

Proof. Wang’s theorem states that B lies at most  away from its axis

where  denotes the distance of point Pi to the axis and that this bound is optimal [56
Furthermore the convex hull containment property of Bézier curves states that B lies entirely
within its control polygon [19]. Therefore the width of B is at most 3/4 of the width of its

E Pi{ }0 i n<≤= a b,( ) ¾2∈

a b,( ) w a b,( ) E( )

w a b,( ) E( )
dia aPix bPiy+{ }0 i n<≤( )
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---------------------------------------------------------------=

¶

dia X( ) maxx X∈ x( ) minx X∈ x( )–=

w
max PQx PQy,( )

PQ
----------------------------------------------≤

w
ρ

a2 b2+
---------------------=

w
max PQx PQy,( )

PQ
----------------------------------------------≤

P0 P1 P2 P3, , ,( )

dia aPix bPiy+{ }0 i 3≤ ≤( ) 4
3
---max a b,( )<
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control polygon with respect to the line , the width of the control polygon being

given by . The result then follows directly from Theorem 4-1. n

A control polygon verifying Theorem 4-2 is said to be flat and the recursive subdivision can
be stopped at that level. If the control polygon does not meet the criterion of Theorem 4-2 then
it is subdivided into two sub-polygons according to Equation 4-1. Equation 4-1 leaves a degree
of liberty in the choice of . Optimizing this value at each recursion step yields a digitization
with the minimum number of discrete segments. Such optimization however falls beyond the

scope of this work and in practice  is the usual choice.

Theorem 4-2 does not provide the complete equation of the digital line segment that is the best
approximation of the spline arc but only its direction. The affine offset  must also be deter-

mined. The ideal value of  which yields a discretization by the closest integer corresponds to

the midline (axis) of the narrowest cylinder of direction  enclosing the curve within

its control polygon. In order to find an algebraic formulation of , we must distinguish two

cases depending on whether the curve crosses the line  or not.

1. The curve does not cross . In this case the curve lies between the line

 and a parallel at three fourths of the distance of the most distant point of the control

polygon (which may be P1 or P2) to that line. Assuming that point to be ,  becomes:

(4-5)

2. The curve crosses . In this case the curve is enclosed in a cylinder of direction

 whose axis is midway between the points  and . Hence  becomes:

(4-6)

A criterion for digitizing 3D Bézier curves stems from the same principle as for 2D Bé
curves: the De Casteljau recursion stops and the curve segment can be rendered as a
line with no loss of precision when the convex hull of its control polygon is bounded by the
its of a 3D digital line as defined in Equation 3-29. Denoting 
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,  and assuming , the condition

writes:

(4-7)

The affine offset proposed in Equations 4-5 and 4-64-6 still holds, with the same restrictions,
in this case by considering independently the projections of the control polygon on the main
planes xOz and yOz.

4.4. Digitization of Bézier surface patches

We call naive digital plane patch a non-empty 26-connected subset of a naive digital plane
 defined as a non-empty polygon on that plane by the following set of equations:

(4-8)

where  and  for .

Figure 4-2: Discretization of a Bézier arc

A Bézier arc described by two flat control polygon (P0,P1,P2,P3) and

(P3,P4,P5,P6). The round dots are the integer points making up the discretization of
the Bézier arc. The dash-dotted lines represent the axes defined by Equation 4-5 while
the simple dashed lines represent the real boundaries of the digital line segments as
defined by Equation 2-4. 
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Special interesting cases of naive digital plane patches include digital quadrilaterals 

and triangles . 

3D bicubic tensor-product Bézier patches as well as Bézier triangles can be approxima
naive digital plane patches as defined by Equation 4-8. Indeed the De Casteljau recursi
struction is general and still applies in those cases. 

Theorem 4-3. Let B be a bicubic Bézier patch defined by its control net . 

,  and . If 

(4-9)

then the best 26-connected integer approximation of B is a digital plane patch of no
direction n.

Theorem 4-4. Let B be a Bézier triangular patch of degree d defined by its control
. Let ,  and . If 

(4-10)

then the best 26-connected integer approximation of B is a digital plane triangle of no
direction n.

Proof. Since the containment property of Bézier patches and triangles within their contr
holds, Equations 4-9 and 4-10 being verified amounts to the whole surface B lying between
the limits defined by Equation 2-8 for a naive digital plane of direction . n

The value of the affine offset γ of the digital plane that represents the digitization of B by the
closest integer point is given by:

(4-11)
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4.5. Connectivity issues

4.5.1. Connectivity of digitized Bézier curves

The construction proposed previously for discretizing a 2D Bézier arc actually builds a
tinuous polygonal line (the dash-dotted line of Figure 4-2) whose discrete counterpart
discretization of the Bézier curve. Thus the overall discretization forms an 8-connecte
which is the most reasonable requirement for the discretization of a perfectly general Béz
In simple cases, if the Bézier arc does not have too important changes in orientation, its
discretization forms a 8-connected simple curve, i.e., every point of the discretizatio
exactly two 8-neighbors except for the endpoints (if the curve is not closed).

In the case of 3D Bézier curves the proposed construction does not create a continu
polygonal 3D line since the midlines of consecutive segments may not be coplanar. How
can be shown that the overall discretization is still 26-connected. 

Theorem 4-5. Let  and  be two digital 3D lines as defined in Equation 3-29 and let

 and  be their respective real square-based enclosing cylinders. If  then

 and  intersect or have two 26-adjacent points

Proof. If  then that intersection contains at least a real point 

Since  is contained in the enclosing cylinder  of ,  contains an integer 

 such that

(4-12)

A similar statement holds for  which contains an integer point  such th

(4-13)

Hence  and  are at least 26-adjacent if not equal which proves the theorem. n

Each segment of 3D digital line making up the discretization of a 3D Bézier curve is th
of points contained in a truncated square-based cylinder (see Proposition 3-1 in Sectio
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Consecutive cylinders always have a non-void intersection since they contain at least one com-
mon real point (the point that is common to the two consecutive Bézier control polygons 
is also part of the Bézier arc itself). Thus, thanks to Theorem 4-5, 26-adjacency betwee
secutive discrete straight line segments is guaranteed.

4.5.2. Connectivity of digitized Bézier surface patches

The connectivity problem becomes more intricate in the case of the digitization of Bézie
face patches where discrete connectivity has to be controlled along the whole length of the
of patches in order to ensure that the resulting discretization is well voxelized in the sense of
[11]. This involves determining the appropriate bounds of the equations defining the di
plane patch in Equation 4-8. We examine the problem in the case of bicubic tensor produ
ier patches though the results still hold in the case of Bézier triangles. The connectivity pr
of surfaces defined by adjacent discrete polygons has been studied by Andrès et al. [4
case of thick tunnel-free polygons, it still remains mostly open in the case of polygons ba
naive digital planes and we only provide directions towards formal proofs.

Let  and  be two adjacent Bézier bicubic tensor-product patches verifying Theore

and having for respective control nets  and  such that P3,i = P’0,i for

0≤i≤3 (Figure 4-3).

Let  and  be two naive digital

plane patches and let us denote H and H’  their real enclosing parallelepipeds defined in
Equation 4-3. We consider two different cases depending upon whether  and

 have the same main direction.

1.  and  have the same main direction. Let us assume that this direction is

Oz. This condition writes  and . In that case Q

and Q’ are adjacent and their union is a 26-connected discrete surface iff  still has the

property of functionality of the individual digital plane patches, which amounts to say that

Figure 4-3: Adjacent bicubic Bézier control nets
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 has everywhere a thickness of 1 in the direction Oz and one full side of H and H’  is

contained in their intersection  (see Figure 4-4).

A problem arises in the case of tensor-product surfaces which may not be planar even though
they verify Theorem 4-3. This results in the choice of inconsistent normal values between adja-
cent patches that make it difficult to meet the previous connectivity criterion. Such a problem
does not occur with triangles, since triangular patches are always planar. Hence, one solution is
to divide the tensor-product patches (which are quadrilaterals) into two triangles and work only
with discrete triangles.

2.  and  have different main directions. In the case where  and
 have different main directions the previous condition does not hold anymore and we

can only guarantee that  is 26-connected if  contains at least one of the sides of
H or H’  and  has everywhere a thickness of at least 1 with respect to the main directions
of  or .

4.6. Summary

In this section we have presented a method to polygonalize Bézier curves and surfac
discrete lines and plane patches. Unlike existing rendering algorithms that all require a
trary tolerance constant , our approach is entirely based on the geometry of the mani
objects and theorems of discrete geometry. Moreover our termination criterion for the su
sion of Bézier curves is optimal. The criterion, though presented here in the case of cubic
and bicubic surfaces, is general and can be extended to Bézier curves and surfaces o
degree. Appropriate connectivity of Bézier curves polygonalized by our method is ensure
in 2D and 3D and we also provide a criterion to ensure appropriate separability of adjace
crete surface patches in restricted cases. Further work is needed to determine a more
solution to this separability problem of 3D patches.

Figure 4-4: Union of the convex hulls of two discrete plane patches

H H'∪
H H'∩

H

H’

1

a b c, ,( ) a′ b′ c′, ,( ) a b c, ,( )
a′ b′ c′, ,( )

Q Q'∪ H H'∩
H H'∪

a b c, ,( ) a′ b′ c′, ,( )

ε

Page 75





¾

d

e only
ay of

 level
iscrete

cales is
equiv-
tinuous

ering
 that
re
 its

on-

self
rsect

ote this
5 Multi-Scale Discrete Geometry

This chapter deals with the relations between discrete geometrical objects considered at different
levels of resolution. It tries to answer questions like “what does the equation of a digital line
become when this line is plunged into a lower resolution grid (subgroup of )” ? What can be
said of a digital parallelogram in the same circumstances ? How are these discrete objects covere
by that grid ?

5.1. Introduction

Studying discrete objects like digital lines or planes at different levels of resolution is a recur-
ring problem that has been little studied in the literature. And yet as the second half of this work
will show (Section 7.3.4) there is a fundamental need for multi-scale geometry. Indeed applica-
tions that choose to use discrete geometrical objects instead of continuous models often need to
work at a very high resolution to ensure acceptable precision. This in turn implies manipulating
objects with thousands to billions of pixels. Given the capacities of today’s computers, th
reasonable way to work with such large structures is to split them into parts. A common w
doing such a split is to divide the structure spatially into tiles, thereby introducing a new
of discreteness. Naturally, this new tiled structure needs to be related to the initial d
structure.

Establishing a relation between a discrete geometric object at various discreteness s
also fundamental from a theoretical point of view: it provides the ground to establish an 
alence between the digitizations at different scales of a continuous object and the con
object itself. 

5.2. Covering of a naive digital line by a lower resolution grid

A simple illustration of the multi-scale discreteness problem consists in finding the cov
of a discrete line by a lower resolution grid. Let  be a naive digital line such

 and . Let us consider the subgroup  of  (whe
 all are integers). Obviously the fundamental domain  of  and

translations by the vectors  for  induce a tiling of  where each tile c

tains exactly one point of  (for which reason we will refer indifferently to the tile it
or to the point of  it contains). We are interested in the set of tiles of  that inte

 (Figure 5-1). This set of tiles is naturally a discrete line in the subgroup 
which can thus be described by means of an equation similar to Equation 2-4. We den
line with  and call it the covering line of  in .

¾2

D a b γ, ,( )
0 a b< < gcd a b,( ) 1= S h v,( ) λh µv,( )= ¾2

λ µ h v, , , 0 h,[ ) 0 v,[ )× S h v,( )

X
h

0 
 
 

Y
0

v 
 
 

+ X Y, ¾∈ ¾2

S h v,( )
S h v,( ) S h v,( )

D a b γ, ,( ) S h v,( )

∆ D a b γ, ,( ) S h v,( )
Page 77



Multi-Scale Discrete Geometry
Covering of a naive digital line by a lower resolution grid5
The tiling generated by  on  induces a new coordinate system where coordinates
 are related to the canonical coordinates of  by the following obvious relation:

(5-1)

which can be inverted as follows:

(5-2)

By definition,  can be written as

(5-3)

Figure 5-1: A discrete line covered by a lower resolution grid

The discrete line  is represented here with white squares together with
the euclidean line . The gray squares represent the covering of the
discrete line by the tiling induced by the  subgroup  where 
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Hence the equation of  in the coordinate system related to  writes:

(5-4)

Moreover, from Equation 5-3 stems

(5-5)

and finally

(5-6)

In order to simplify Equation 5-6 let us introduce 

(5-7)

Considering the fact that  and  vary when  steps through , Equation 5-6 becomes:

(5-8)

Now to fully determine this equation that defines the covering of the digital line by the tiling,
the exact range of , i.e., the values of  and

, need to be calculated.

5.2.1. Determination of the range of 

By definition in Equation 5-7, it is clear that:

(5-9)

using these bounds in Equation 5-8 suggests for  an equation of the form:

(5-10)

∆ S

γ a
x
h
---

 
 
 

– b
y
v
--

 
 
 

– ahX bvY+ γ b a
x
h
---

 
 
 

– b
y
v
--

 
 
 

–+<≤

y
ax γ–

b
--------------–=

γ a
x
h
---

 
 
 

– b

ax γ–
b

--------------–

v
-----------------------

 
 
 
 
 

– ahX bvY+ γ b a
x
h
---

 
 
 

– b

ax γ–
b

--------------–

v
-----------------------

 
 
 
 
 

–+<≤

mx
x
h
---

 
 
 

=

my
y
v
--

 
 
 

ax γ–
b

--------------–

v
-----------------------

 
 
 
 
 

= =

mx my x ¾

γ maxx ¾∈ amx bmy+( )– ahX bvY+ γ b minx ¾∈ amx bmy+( )–+<≤

amx bmy+ minx ¾∈ amx bmy+( )
maxx ¾∈ amx bmy+( )

amx bmy+

0 mx h 1–≤ ≤
0 my v 1–≤ ≤

∆

γ a h 1–( )– b v 1–( )– ahX bvY+ γ b+<≤
Page 79



Multi-Scale Discrete Geometry
Covering of a naive digital line by a lower resolution grid5
But since  can only assume values that are multiples of , the
bounds of Equation 5-8 can be refined. Denoting , this equation becomes

(5-11)

or 

(5-12)

However since  and  are linked through Equation 5-7, the precise bounds of 
when  steps through , need to be determined. In fact, we show in what follows, that even
though  does not reach the absolute bounds 0 and  in some cases,
Equations 5-11 and 5-12 always hold.

Inverting Equation 5-7 yields

 (5-13)

hence, thanks to Equation 5-5

(5-14)

which is equivalent to:

(5-15)

 has for values the multiples of :

(5-16)

Equation 5-15 can thus be rewritten as

(5-17)

Equation 5-17 describes a family of digital lines of direction  parameterized by ,
which we denote . The intersection of  with the domain of , ,
defines the possible pairs  and therefore the range of possible values for the sum

 (see Figure 5-2).
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Let us denote with  the pair of  that yields the maximum value
for the sum , i.e. 

(5-18)

Let us also denote with  the difference between  evaluated at  and

at :

(5-19)

By construction it is clear that , therefore using Equation 5-17 and Equation 5-19
we can write that there exists one value of  such that:

(5-20)

Determining the maximum value of  verifying Equation 5-20 provides a more precise
expression of the upper bound of . Equation 5-20 becomes

(5-21)

which can be further transformed:

(5-22)

Figure 5-2: Determination of the range of 

The gray squares represent the family of digital lines defined by
 restricted to  and hence the possible

values of 
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then

(5-23)

At this point, we must distinguish two cases according to . 

1.  divides . In this case Equation 5-23 becomes

(5-24)

Hence  is bounded by

(5-25)

And finally we get  which means that  and that the lower
bound of Equation 5-12 holds.

2.  does not divide . In this case Equation 5-23 becomes

(5-26)

Hence  is bounded by

(5-27)

It follows:

(5-28)

which is equivalent to:

(5-29)

showing that the lower bound of Equation 5-11 holds.
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A similar reasoning can be applied with the minimum value of  throughout
 which shows that the upper bounds of Equations 5-11 and 5-12 also hold

in all cases. Those equations can be formulated as a single expression which yields the
following theorem:

Theorem 5-1. The discrete line  of  covering the naive digital line  of
 is defined by:

(5-30)

where ,  and 

As an example, let us study the covering of the digital line 

(5-31)

by the tiling induced by . The equation of the covering line  is given by
Equation 5-30:

(5-32)

which we can see in Figure 5-3.

5.3. Covering of a parallelogram by a low resolution grid

5.3.1. Introduction

We will now present a solution to another problem related to multiple scales of discreteness:
given a digital parallelogram  in , how does one find its covering by a tiling

 where  (Figure 5-4) ? This question actually originated from

Figure 5-3: The covering line of  by : 

amx bmy+
Dt 0 h,[ ) 0 v,[ )×∩

∆ S h v,( ) D a b γ, ,( )
¾2

γ a b+ +( )–
g

-----------------------------– α– β– αX βY+
γ b 1–+

g
-------------------- 1+<≤

g ah bv,( )gcd= α ah g⁄= β bv g⁄=

D 7 9 6, ,( ) : 6 7x 9y+ 15<≤

S 6 7,( ) ∆

∆ : 3– 2X 3Y+ 1<≤

D 7 9 6, ,( ) S 6 7,( ) 3– 2X 3Y+ 1<≤

ABCD( ) ¾2

S h v,( ) λh µv,( )= λ µ h v, , , ¾∈
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a very practical concern and the solution presented here finds its way into the digital plane and
surface extraction algorithms introduced in Chapters 7 and 8. 

More precisely, let , ,  and  be four integer points, we define the

integer parallelogram  as the set of integer points contained within the euclidean
parallelogram defined by the four points (including the boundary lines) denoted .
This corresponds to the intersection of two thick digital lines which can be formulated as
follows:

(5-33)

where  is the vector normal to AB pointing to the interior of the parallelogram, i.e. having

the same orientation as AD, , and  is the vector normal to AD also pointing to

the interior of the parallelogram, i.e. having the same orientation as AB, . Moreover,
, ,  and . We also

suppose the parallelogram is not degenerate, i.e.  and

. We are interested in determining the intersection of 
with the lattice .

Since a digital parallelogram is defined as nothing more than the intersection of two digital
lines, the previous method used to determine the covering of a line could also be applied and
extended for this particular situation. However the demonstration is a bit tricky, so we will use

Figure 5-4: Covering of a digital parallelogram by a tiling

Gray squares represent the pixels making up the digital parallelogram (remember our
convention roots pixels at their bottom-left corner, see Section 2.1). Transparent thick
squares represent the tiles that cover the digital parallelogram.
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a different approach here which also illustrates the wealth of possibilities available to solve
problems in discrete geometry.

5.3.2. Morphological dilation

This approach is based on the concept of dilation by a structuring element found in mathemat-
ical morphology, itself issued from Minkowski’s addition [14][50]. This operation is define
follows. 

Definition 5-1. Let  be a subset of . At each point  of , called guiding point, we

define a subset  of  called structuring element. We call dilation of  by the structuring

element , the subset of :

(5-34)

That is, for each point  of , the question “does  touch the set ?” is asked. The
points  for which the answer to this question is positive is the dilation of  (Figure 5-5

There is no problem in applying a similar definition in . Let us then consider as a str
ing element a rectangle rooted at its bottom left corner: 

 corresponds to the fundamental domain of the lattice . Let  be

result of the dilation of  by  in :

(5-35)

It is clear that the tile of  associated to the point  is identical to the structu
element . Therefore, right from the definition of the dilation operation, it becomes 
ous that the tiles of  that make up the covering of  are the tiles assoc
with the points of the lattice ,  contained in . Indeed any 

Figure 5-5: Dilation by two different centered structuring elements
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of  associated with a point outside of  does not intersect 
while every tile associated with a point inside of  intersects 
(Figure 5-6).

Figure 5-6 suggests that a formal algebraic expression of the dilation of  can be
derived as a truncated digital parallelogram (the dashed lines in Figure 5-6 show where this
truncation takes place). To establish this expression, a preliminary result is needed however.

5.3.3. Dilation of an euclidean line by a rectangle

Let  be an euclidean line of rational direction defined by the following equation:

(5-36)

We are interested in determining the equations of its dilation by a rectangle
. This dilation is naturally a strip, i.e., a region of  contained

between two euclidean lines parallel to .

As illustrated by Figure 5-7, two different cases must be distinguished.

Figure 5-6: Dilation and covering of a digital parallelogram

The original digital parallelogram consists of the gray pixels. The dilated
parallelogram consists of the gray pixels and the added brown pixels. The euclidean
boundaries of both digital parallelograms are shown as continuous lines. The covering
of the original parallelogram by the blue tiling is represented by thick transparent blue
squares.
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of

:

1.  have different signs. In this case the boundary lines of the dilated region are given by
the two equations:

(5-37)

(5-38)

To order these two bounds a further distinction must be made.

• If  and , the equation of the strip writes:

(5-39)

• If  and , the equation of the strip writes:

(5-40)

2.  have the same sign (or one of the two is null). In this case one the boundary lines 
the dilated region is the line itself while the other one is given by the equation:

(5-41)

Again, to order the two bounds into a single equation, two cases must be distinguished

• If  or , the equation of the strip writes:

(5-42)

• If  or , the equation of the strip writes:

(5-43)

Figure 5-7: Dilation of an euclidean line by a rectangle
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Equations 5-39, 5-40, 5-42 and 5-43 can then be summarized as follows:

(5-44)

By further noticing that

(5-45)

and that

(5-46)

the Equations 5-44 can be combined together into the following single expression:

Theorem 5-2. The dilation in  of the euclidean line  by a rectangle
 is the set of integer points verifying the following

diophantine inequation:

(5-47)

5.3.4. Morphological dilation of a digital parallelogram

Thus far we have only considered the dilation of euclidean objects of . Now we want to
consider the dilation of a digital parallelogram of  by a rectangular structuring element

 as defined in section 5.3.2. Transposing the results established previously to this latter
case involves some subtleties.

By definition, the dilation of the digital parallelogram  by  in ,

denoted , is the set of integer points  such that  and 
share at least one common integer point.  is defined by the system of
Equation 5-33 which means that it is the set of integer points contained within the region delim-
ited by four euclidean boundary lines, i.e., the euclidean parallelogram . 

For  and  to share at least one integer point,  and 
must have an overlap of width or height of one at least, in order to ensure that this overlapping
zone contains at least one integer point. Hence  is equivalent to the set of integer
points contained in the region delimited by the dilation, in , of the euclidean boundaries of
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 by a structuring element one unit smaller in  and  than  which we
denote  (see Figure 5-8).

Thus we can define the discrete dilation of  by  by considering the con-
tinuous dilation of  by  and applying Theorem 5-2 to each boundary line.
This leads to the following equation system:

(5-48)

where

(5-49)

The set defined by Equation 5-48 is actually larger than  (see Figure 5-6).
Indeed, given the considered structuring element and by definition of the dilation operation,

 must be entirely contained in a rectangular area defined by
 where 

(5-50)

Figure 5-8: Discrete vs. continuous dilation
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Therefore Equation 5-48 needs to be refined with the following additional conditions in order
to yield the equation system defining precisely :

(5-51)

By further scaling these equations by , we obtain a system that can be solved by the
method exposed in Section 2.5.1.

Theorem 5-3. The covering of the parallelogram  by the tiling  is the
set of tiles of coordinates  (in the coordinates system associated to ) verifying:

(5-52)

where  are defined in Equations 5-49 and 5-50.

As an example, let us consider the parallelogram defined by the following 4 points, ,

, ,  equivalently defined by the following equation system:

(5-53)

The covering of this parallelogram in  is given by Theorem 5-3 which writes in this
case:

(5-54)
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The first two equations can be rewritten according to the method of Section 2.5.1:

(5-55)

Solving this equation and applying the identity , yields the solution:

where one can notice that the  solution (grayed out in the table) is not compatible with
the two other equations in Equation 5-54:

(5-56)

so it is discarded. The final result is illustrated in Figure 5-9.

5.4. Summary

In this section we have illustrated by means of two different examples some problems pre-
sented by multi-scale discrete geometry, i.e., what happens when discrete objects are considered
with respect to rectangular subgroups of  instead of  itself. Such subgroups define tessel-

X -235 -230 -187 -182 -139 -134 -91 -48 -43 0 5 48 53 96

Y -93 -91 -74 -72 -55 -53 -36 -19 -17 0 2 19 21 38

x -3 -1 -2 0 -1 1 0 -1 1 0 2 1 3 2

y 1 2 1 2 1 2 1 0 1 0 1 0 1 0

Figure 5-9: Covering of a digital parallelogram by a lower resolution grid

The parallelogram defined in Equation 5-53 is shown here with its covering by the
tiling 
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lations of the plane by rectangular tiles. Our primary concern was to determine the coverings of
discrete objects by such tilings. Using two different approaches, one direct, based on the alge-
braic equation of a naive straight line and the second one geometric, based on the concept of
morphological dilation, we established the equations defining these coverings exactly for digital
lines and digital parallelograms. This latter result finds a direct concrete application in the dig-
ital plane extraction algorithm presented in Chapter 8.
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6 Introduction

6.1. Medical imaging techniques and challenges

Medical imaging techniques play an ever increasing role in patient care. Since the first medi-
cal use of X-rays at the beginning of this century, physicians have investigated a wide variety
of physical processes to image the human body, some of them are of routine use for diagnosis
today: magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT) ultrasound imaging (echography) and naturally X-
rays which remain the most commonly used modality. 

But the real revolution was the introduction of Computed Tomography (CT) in the 70’s [10].
Initially based on X-rays, CT is nowadays a technique involved in most of other imaging m
ities (even though the term CT itself is often used as a shorthand for X-ray CT). Ind
conventional radiography offers a projection of the absorption of a flux of X-rays by a re
of the body, i.e., the image is the result of the cumulative absorption of rays by all the t
traversed by the X-ray beam. On such an image the absorption of a single organ or tis
not be estimated. CT on the other hand, brings the possibility to get a view of the indi
absorption at every point of a thin slice of the examined region. This view is actually obt
by computation (hence the name computed tomography) and not by direct imaging. CT u
one, but a series of radiographies taken at regular intervals around the region to e
(Figure 6-2). Thanks to the inverse Radon transform (backprojection), those individual p
tions are combined together to calculate the individual absorption at every point of the exa

Figure 6-1: Sample medical images

X-ray radiography X-ray CT MRI
Coronal view of the thorax Axial view of the thorax Coronal view of the thora
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slice thus providing a detailed image whose contrast depends on the variations of X-ray absorp-
tion by the body cells at every point of the slice.

Thus CT has opened the doors of hospitals to computers and nowadays all but a few medical
images are in fact computer calculated images that are printed on film afterwards. Facilities
offered by computer storage and archiving also contribute to this trend, and even the traditional
X-ray radiographies will probably be replaced by a digital equivalent in the near future. The
images produced today by the vast majority of medical imaging modalities (X-ray CT, MRI,
SPECT...) are series of bi-dimensional digital images which are fed into computers for further
exploitation. Stacking these 2D images forms a three-dimensional image of the examined
region. Computer imaging techniques are then used to present physicians with selected views
of the data. There exist essentially two main different ways to display 3D medical data [9, 18,
52]. Surface rendering was developed first and was very popular in the 70’s and 80’s. The
rent trend, however, seems to be more in favor of volume rendering.

Surface rendering aims at reducing the amount of data to process by deriving a lower 
sional representation of an isolated surface of an object of interest. This interm
representation is generally a mesh of triangles but can also be made of a set of voxels or 
of voxels belonging to the surface of interest. Three-dimensional views of the surface ca
be rendered very fast, sometimes using hardware acceleration. One of the major drawb
this approach is that the whole original volume must be reprocessed whenever a new o
region of interest is selected.

On the other hand, volume rendering uses the original 3D volume directly thereby avo
the volume reprocessing penalty [40]. However, volume rendering requires huge com
resources since it manipulates much more data than surface rendering algorithms. As co
power increases and the implementations of the algorithm become more efficient, the s
concept of volume rendering and its higher quality images become more and more appe

Figure 6-2: Principle of an X-ray CT scanner

Object

X-ray tube

Detector ring
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6.2. High-performance visualization of planes and surfaces

As the resolution of acquisition devices increases, the amount of data acquired in a single
examination becomes huge. Processing such volumes of information traditionally requires
expensive parallel computer hardware. In the past, medical imaging has required mainframe
computers or high-end workstations with multiple CPUs in order to achieve reasonable compu-
tation times. Several special purpose multiprocessor architectures and hardware based
algorithm implementations have even been developed [52]. For these reasons, physicians used
to content themselves with the sole 2D views and have become experts in the process of men-
tally reconstructing the actual volume from these images. Recent interviews with doctors have
shown that most of them still feel more comfortable with two-dimensional views and have dif-
ficulties in manipulating and extracting relevant information from volumic images. 3D
visualization, though spectacular, remains of limited medical interest. Thus, slicing, i.e. extract-
ing a plane having any desired position and orientation from the acquired 3D volume remains
the tool of choice in routine diagnosis and treatment.

These considerations and the contacts established with Professor O. Ratibe, Dr. L. Bidaut and
Dr. R. Welz at the University Hospital of Geneva guided the design of the medical visualization
applications that are presented in the following sections. Within this thesis, the DigiPlan library
was developed for the extraction of slices of arbitrary orientation out of 3D biomedical acqui-
sitions (CT, MRI). However, this type of view rapidly appears somewhat limited since rather
few of the structures in the human body are planar. Often one would like to get a view like a
slice taken throughout the whole length of the vertebral column or the jaw for instance. This led
to the development of DigiSurf, a library that generalizes DigiPlan and generates a flat 2D view
of ruled surfaces extracted from 3D medical image volumes.

The high resolution of medical scans is also synonym of high computer storage space require-
ments. Until recently, the only viable means of exchange of images between physicians was
film. With the expansion of CD-ROM usage however, this situation is changing. Patients car-
rying their own examination images on CD-ROM from the clinic to their MD is an option being
considered. Besides, thanks to the Internet, doctors can now download the images of their
patients from the radiology center down to their own office for local examination or even
browse them on-line. Telemedicine is a hot research topic and will certainly become a reality in
the forthcoming years: physicians will be able to have virtual meetings with colleagues,
exchange images of patients, have their diagnostic confirmed by distant specialists, etc... All
this implies that modern medical visualization software must be highly scalable in order to be
able to run on the low-end PC that can be found in medical practices as well as on the powerful
Internet imaging servers located in hospitals and clinics.

Fortunately the increase in performance of commodity hardware such as Pentium-based PCs
as well as the possibility of connecting arrays of disks through SCSI channels enables building
much cheaper interactive 3D image storage and visualization devices. Striping the image onto
a set of disks and reading from them in parallel offers an aggregate bandwidth compatible with
the requirements of medical imaging. Furthermore, several PCs can be connected through com-
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modity network hardware such as Ethernet or Fast-Ethernet and provide increased computing
power for algorithms designed to run in parallel. 

On the software side, visualization algorithms designed for such systems need to be able to
run in parallel on multiple CPUs and achieve high efficiency in order not to choke when they
are fed tens of megabytes of data per second read in parallel from the disks. 

Unlike RISC processors that achieve great performance dealing with floating-point numbers,
CPUs of the x86 family which form the core of PCs today, are processors largely intended for
integer computation. MMX technology has even reinforced this trend. MMX (MultiMedia
eXtensions), a technology developed by Intel, adds new instructions to the traditional x86
instruction set, especially targeted at signal processing. These instructions, inspired from the
DSPs (Digital Signal Processors), use the floating-point registers of the x86 CPU in order to
save chip space and to be able to process several integer operands in parallel. Switching contexts
between MMX and floating-point register usage imposes a great penalty in terms of CPU
cycles. Therefore, such an architecture clearly favors the choice of pure integer arithmetic.

Moreover 3D volumetric datasets produced by medical imaging modalities are inherently dis-
crete, made of voxels. Mapping continuous models on such discrete spaces, though apparently
simple, actually introduces several difficulties and inconsistencies. Discrete geometry, as it has
been shown in the first half of this work, takes advantage of the discrete nature of such objects,
considering them for what they are, working directly on them and not on a continuous pseudo-
equivalent. This approach has incomparable advantages like consistency and efficiency which
allow to derive numerically stable algorithms well suited for parallelization. These aspects
make discrete geometry appear like the tool of choice in the design of biomedical visualization
algorithms. Through the following application examples we will thus show that discrete geom-
etry, far from being a pure abstraction, is also strongly rooted in concrete problems and that
many theoretical results developed previously find direct applications.

6.3. The CAP/PS2 parallelization framework

To achieve the best performance on a multi-PC multi-disk architecture, an algorithm needs to
avoid data transfer overheads and must hide disk latency by pipelining the asynchronous disk
accesses and the actual computation. Indeed, it is remarkable that even simple PCs, thanks to
technologies like SCSI and DMA, can perform disk read/write operations in parallel with com-
putation since the main processor is not used for data transfers between storage peripherals and
memory. Developing parallel I/O intensive applications taking advantage of this fact and
involving multiple processes running on different processors represents a very tedious effort.
One needs to define and implement application-specific protocols in order to exchange param-
eters and data between different processors that do not share a common memory space.
Furthermore, debugging parallel applications and ensuring they are deadlock-free remains a
very difficult task. Ensuring that the program is portable from one parallel architecture to
another and that it scales well introduces yet another constraint.
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In order to facilitate the development of parallel applications, the Peripheral Systems Labora-
tory at EPFL (Dr. B. Gennart, and Dr. V. Messerli under the direction of Prof. R.D. Hersch) has
developed the CAP/PS2 (Parallel Storage and Processing System) parallelization framework
[43]. This system targets architectures such as described above, consisting of a number of stor-
age and processing nodes (per node: a processor connected to several disks) and a client node
(a processor with an attached display). The client node and the storage/processing nodes are
interconnected by a Fast Ethernet LAN (100 Mb/s) (Figure 6-3). 

The core of the CAP/PS2 framework comprises:

• a high-performance parallel file system built on top of the native MS Windows NT 
system (NTFS) running on each node. This parallel file system declusters large fil
into sub-files that reside in the different storage and processing nodes and provide
the necessary primitives to access these subfiles;

• the CAP (Computer-Aided Parallelization) extension to C++ which enables applica
programmers to specify at a high-level of abstraction the flow of data between 
pipelined-parallel operations ensuring that the resulting program is deadlock-free, 
portable and appropriately combines parallel storage access routines and image 
processing operations [27, 28].

Figure 6-3: Hardware architecture targeted by the PS2 parallelization framework
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The DigiPlan and DigiSurf libraries were developed using this framework and thus take full
advantage of the possibilities it offers : 

1) Striping among several disks enables handling images of arbitrary size with optimum 
performance as data is fetched in parallel from the disks

2) Applications are scalable since they are able to run on platforms ranging from the 
simple mono-processor to a multiprocessor shared-memory system and up to a cluster 
of networked computers
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7 DigiPlan: Volume Slicing with Discrete Planes

This chapter presents an algorithm for extracting planar slices of arbitrary orientation from a 3D
voxel-based volume. Discrete geometry is shown to be well-suited for this application. It simpli-
fies the parallelization of the algorithm and contributes to its overall efficiency. A brief summary
of the performance of the algorithm running on various parallel configurations is also presented.
Finally, a concrete Web application using this algorithm for medical imaging is also described.

7.1. Introduction

For years, physicians and radiologists have been used to reading directly the printouts of the
slice images produced by various medical imaging modalities (CT, IRM, etc...). This kind of
slice series is largely used for the education of medicine students and thus young doctors get
familiar very early with the interpretation of this type of two-dimensional views. And though
three-dimensional imaging is now entering medical schools, most physicians still feel more
comfortable with the examination of two-dimensional slice views. Traditionally, medical imag-
ing devices provide three types of orthographic views (axial, sagittal and coronal) which still
make up the basis for most diagnoses.

Figure 7-1: Traditional orientations of biomedical slice images

(a) Human 3D model, courtesy of Julien Proux; (b) MRI head scan, courtesy of
University Hospital of Lausanne (CHUV)

Axial Sagittal Coronal

(a)

(b)
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This limited set of orientations is convenient since it always offers the same viewpoint, mak-
ing it simpler for the physicians to recognize precisely which anatomical structure they are
watching and also giving them a solid basis for comparison between similar shots, say, an
healthy organ and a pathology of this organ or shots of the same anatomical region taken at dif-
ferent times. 

Orthographic views are sometimes too restrictive and breaking this limitation on orientation
to offer arbitrary oblique views is a natural extension. Rhodes et al. [47] provide specific exam-
ples where oblique views are necessary to diagnose particular conditions such as orbital masses
or meningioma in the optic sheath. By construction however, most acquisition devices can only
provide views in the three main orthographic directions. Therefore oblique views need to be
obtained by computer reconstruction from orthographic slices. As a preliminary step, the series
of evenly spaced 2D slice views produced by the acquisition device are stacked onto one another
in order to create a virtual 3D view of the examined region. This 3D volume makes it possible
to reconstruct slices of arbitrary direction. 

7.2. Algorithm overview

7.2.1. Objectives and design

The increasing size of the volumetric datasets produced by medical imaging modalities is
bound to become one of the major concerns when designing medical visualization algorithms.
However research in the fields of visualization has traditionally focused on raw computing per-
formance improvements with little attention paid to storage and I/O issues. A common
assumption is that the hardware has enough main memory to hold the whole image at once and
that this memory is uniformly accessible (shared-memory paradigm) [51]. But these machines
are out of the reach of the general practitioners and can only be afforded by important hospitals
or clinics. 

Figure 7-2: Stacking 2D slices to create a 3D volume
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Taking these considerations into account, we propose here a parallel distributed slicing algo-
rithm based on discrete geometry called DigiPlan. Its advantages over previous
implementations are:

• high-performance thanks to parallelism at two levels: computation and disk acces
which are furthermore pipelined (see Section 7.3);

• the size of the processed images is not limited by the available memory but rather
disk space;

• pure software implementation with no need for dedicated rendering hardware ther
ensuring better portability across a wide range of machines

• allows the application to run both on a single-processor PC and a network cluster 
PCs. 

Close integration of DigiPlan within the CAP/PS2 parallelization framework enabled us t
achieve this goal Such features would have been very difficult to implement, not to say i
sible within the available time frame using ad hoc parallelization code. Thus, even th
DigiPlan uses an abstraction layer that makes it more or less independent of the und
image library and parallelization substrate, its current implementation is tightly boun
CAP/PS2 which largely guided its design.

Figure 7-3 shows the overall design of the integration of the DigiPlan library within
CAP/PS2 framework. 

At the bottom, the Windows NT operating system is insulated from the above layers b
libraries: the LSP Foundation Library and the LSP Communication Library which provide
respectively basic data structures, memory pool allocation routines and OS independen
process communication primitives. 

Figure 7-3: Integration of DigiPlan within the CAP/PS2 framework
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The CAP Library, which stands for Computer Aided Parallelization Library, provides the nec-
essary functions to implement the features of the CAP language, i.e. sequencing of operations,
thread/process management and synchronization, inter-address-space message-passing, etc...
The PS2 system together with the CAP Library upon which it depends, constitute the core of the
CAP/PS2 framework. 

PS2 offers the necessary primitives to access striped files distributed over a cluster of net-
worked machines each having several disks attached (see Figure 6-3). A PS2 file is divided into
a series of atomically addressable chunks called extents. PS2 is perfectly general and makes no
assumption on the nature of the files it handles, thus it does neither determine the size of the
extents nor their distribution on the disks, both of which are application-dependent parameters.
On the other hand, on each disk, it stores the extents belonging to the same striped file into a
single NTFS file. It also provides open/close primitives at the striped file level and exports com-
putation threads into which custom operations can be plugged, thus ensuring a very tight
combination of disk access and computation operations [44].

The ImageServer Library completes PS2 by offering primitives dedicated to the handling 2D
and 3D images. ImageServer image files are PS2 files and thus are divided into extents. 2D
image extents are actually rectangular subtiles of the original image, while 3D image extents are
rectangular parallelepipedic subvolumes of the original image (Figure 7-4).

Considering that image access patterns to large 2D or 3D images generally consist of contig-
uous regions (visualization windows), extent based image access when combined with an
appropriate distribution of the extents onto the disks has been shown to be very efficient [31,
26]. Indeed, storing a large 2D image scanline by scanline or a large 3D image plane by plane
results in poor access times when a small contiguous portion must be visualized since much
more data than necessary needs to be read from the disks. Partitioning a large image into rect-
angular (resp. parallelepipedic) extents greatly improves access times for this type of
visualization requests.

Figure 7-4: 2D and 3D Image Extent Partitioning
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The extent size in pixels and hence its overall size in bytes is an important factor of perfor-
mance: too small an extent increases the overhead due to accessing extents and to disk latency,
too large an extent increases the amount of data to be fetched to visualize a given window. In
practice the extent size should be kept between 12 and 48 KBytes [31]. The extent dimensions
are specified by the user at image creation time (or when images are converted to the
ImageServer’s format).

Extent distribution is what ultimately balances the load of the visualization system. A 
distribution must ensure that for any visualization request, the affected extents are dist
onto as many disks as possible. This task is handled by the ImageServer library and is a
by introducing, between two successive rows of extents and between two successive p
extents, offsets which are prime to the number of disks.

Finally, the DigiPlan library sits on top of all these layers. It uses the ImageServer libra
open/close the 3D image files and query their geometric and storage parameters (ima
extent size, number of bytes per pixel, etc...) Then it uses directly the PS2 extent reading prim-
itive in order to achieve maximal performance (extent read/write are the fundamenta
operations, hence the fastest I/O operations in the CAP/PS2 framework).

7.2.2. Discrete plane scanning algorithm

Extracting oblique slices from 3D volumetric data is a problem that has focused some
tion in the past and for which several methods have been proposed. The earliest as cited
used a very cumbersome approach consisting in transforming the entire 3D volume acc
to the oblique direction to make it perpendicular to the viewer. Pixels were then remov
front of and behind the plane of interest. This, of course, requires large amounts of proc
time and is very inappropriate as the computation time of such an algorithm is a linear fu
of the 3D volume size when it should be a function of the size of the 2D plane part to dis

Other intuitive approaches consist in direct computation of the final slice pixels using 
form of floating-point interpolation (generally tri-linear) of the voxel values in the 
dataset [45]. But tri-linear floating-point interpolations are a costly operation which makes
dling large images awkward on small computer systems. Hardware implementations in th
of 3D texture mapping engines exist [25], especially from Silicon Graphics (SGI), but this
of hardware remains expensive and though a de facto standard like OpenGL ensures app
portability, existing implementations perform poorly on low-end non-hardware accele
systems. 

More original approaches, such as operations in the Fourier domain have also been p
[37]. Though conceptually interesting, the necessity of going back and forth between the
and frequency domains makes such a method computationally expensive and thereby
quate to process large images fast. 
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Rhodes et al. [47] presented a particularly innovative method at the time it was developed,
which tried to draw some benefits from the discrete nature of the volumetric dataset produced
by X-ray CT scanners. That method could still be deemed interesting today if it was not built on
so shaky theoretical foundations. Nevertheless it formed the ground for subsequent approaches
based on discrete geometry, including ours. The development apparently proceeded directly
from the need to avoid artifacts in the views of oblique planes and could not be rooted in discrete
geometry methods that were developed later. Thus the surfaces that were extracted by that algo-
rithm were rather coarse approximations of euclidean planes by discrete sets of voxels that do
not fit the current definition of digital planes.

In order to take full advantage of the discrete nature of the 3D datasets generated by medical
acquisition devices, we propose an original approach based on discrete geometry. Its advantages
over previous methods reside in its high efficiency and numerical stability thanks to the use of
integer arithmetic, as well as its rigorous geometrical foundation which guarantees images of
good quality and makes the parallelization of the algorithm easier. 

As shown in Section 2.3, rational euclidean planes have a digital 18-connected counterpart
called naive digital planes defined by an equation of the form:

(7-1)

 represents the digitization by the closest integer point of the euclidean plane

. 

Now without loss of generality, let us suppose that all three coordinates  are positive
and that the main direction of the normal to  is , i.e., . Inequality 7-1 leads
to the following equality :

(7-2)

which shows that a naive digital plane defines a map from  onto . The voxels belonging
to the digital plane can therefore be determined with a double loop in  and . Additionally

 and  can be expressed incrementally with respect to . With the
notation

(7-3)
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(7-4)

we can evaluate :

(7-5)

Let us distinguish two cases:

• , Equation 7-5 becomes

(7-6)

• , then Equation 7-5 becomes

(7-7)

Additionally

(7-8)

Considering that a similar evaluation of  is also possible, Equations 7-6, 7-7 an
are synthesized in the algorithm of Figure 7-5. This algorithm uses integer arithmetic on
has a very tight loop core which can easily fit into the primary level cache of the process

7.2.3. Final backward mapping and the zooming extension

Slicing through the volume actually means extracting a rectangle, called visualization rectan-
gle (Figure 7-6) from the volume and displaying it on the screen.The geometric specificat
a visualization rectangle consists of five parameters defined in the absolute coordinate 
(see Figure 7-13) : its normal, as an integer vector denoted n, which defines the viewing direc
tion, the center of the visualization rectangle within the 3D dataset as an euclidean point (
denoted , a second integer vector called down, denoted d, orthogonal to the normal, which
defines the up/down orientation of the rectangle display on the screen and finally two int
width and height which define the size of the visualization rectangle.
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Scanning the plane supporting the visualization rectangle using the previous algorithm creates
a 2D projection image that is not suitable for direct display on screen since selected voxels are
in the original volume 3D grid. Figure 7-7 summarizes the geometry of the scene and the matrix

 that maps from the screen space onto the projection space in the case the main direction of
the normal, n, is , i.e. . 

A final backward mapping transforms the intermediate rectangle projection into the final
screen view. It operates in a double loop on the screen space applying the matrix  to determine
the coordinates of the corresponding points in the projection space. The displacements in the
projection space corresponding to a unit step in the  and  directions in the screen space are

zy = -Div(a*xmin+b*ymin-gamma,c) Integer division
ry = Rem(a*xmin+b*ymin-gamma,c) Integer remainder
for y=ymin to y=ymax do

z = zy
r = ry
for x=xmin to x=xmax

GetValueofVoxelAt(x,y,z)
r = r+a
if r>=c then

r = r-c
z = z-1

endif
endfor x
ry = ry+b
if ry>=c then

ry = ry-c
zy = zy-1

endif
endfor y

Figure 7-5: Naive discrete plane scanning pseudo-code

Figure 7-6: Extracting an oblique slice from a 3D voxel dataset
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derived from the columns of . In general, these displacements are irrational but can be
approximated by rationals with an arbitrary precision. Therefore, the double loop can be per-
formed incrementally using integer arithmetic with no loss of precision. Note also that this step
is a 2D resampling, not to be mistaken with the computationally much more intensive direct tri-
linear volume resampling used by other slicing methods. Furthermore, for maximum efficiency
we use nearest neighbor interpolation at this point, though bilinear interpolation could naturally
also be used. In the case of very high resolution images like the Visible Human, the difference
is perceptually negligible in most situations and does not justify the computation increase.

This last resampling step is not a heavy penalty, first because it is a 2D operation that can be
optimized more easily than tri-linear interpolation and secondly because one can make the most
of it by using it to scale the displayed image. Indeed, introducing a multiplicative coefficient in
the resampling matrix coefficients provides a convenient means of applying a zoom factor,
thereby allowing the display of downscaled slices at no extra cost. This is particularly useful to
produce global views of very large datasets like the Visible Human (Section 7.5).

7.3. Parallelization considerations

7.3.1. Design

Now considering that the volumetric dataset is partitioned into extents distributed over several
disks, a parallel version of the slicing algorithm requires the following operations: (1) determine
the extents intersecting the visualization rectangle, (2) read these extents from the disks, (3)
extract the digital plane part contained in each extent and resample it for screen display, (4)
merge the individual resampled plane parts into the final screen display buffer.

Figure 7-7: Geometry of the projection scene
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As illustrated in Figure 7-8, these elementary operations can be both pipelined and carried out
in parallel. Pipelining can be achieved at three levels:

• a digital plane part can be extracted and resampled while the next one is being rea
from the disk

• a resampled plane part can be merged into the display screen buffer while the nex
is being extracted and resampled

• a full visualization rectangle is displayed while the next one is being extracted, in c
request for browsing several slices into the volume is made

Parallelism can be achieved at two levels:

• several extents can be fetched simultaneously from the disks. Thus, increasing the
number of disks provides an increased aggregate I/O throughput

• digital plane parts can be extracted from several extents at the same time if severa
processors are available. Thus, increasing the number of computation slave nodes
increases the overall performance of the extraction and resampling computations.

The individual operations (1), (2), (3) and (4) are purely sequential operations, only
arrangement shown in Figure 7-8 introduces parallelism and pipelining. Transcribing s
graphical flow chart into working code is the purpose of the CAP extension to C++ which
used to implement the parallel slicing algorithm. Figure 7-9 shows the corresponding
pseudo-code (for the sake of clarity the syntax has actually been slightly simplified). Fro
very short synthetic description, the CAP preprocessor generates all the necessary code 
the appropriate processes and threads, to schedule the individual operations, and to e
data between threads possibly located in different address-spaces (when running in a m
environment).

Figure 7-8: Graphical flow-chart of the parallel slicing algorithm
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7.3.2. Expected gains

The slicing algorithm is particularly well suited for parallelization, indeed there is no data
dependency between the computations made on each extent. Thus each storage and processing
node can work independently on its set of extents without needing to exchange information with
the other nodes. This greatly simplifies the design of the parallel algorithm and reduces the
amount of communications which guarantees a very good parallelization speedup. Actual per-
formance measurements show that the speedup is linear from one to five computation nodes
loaded with 12 SCSI disks (Section 7.4). 

7.3.3. Possible Variations

In the proposed configuration (Figure 6-3), the network appears as the only resource which is
not easily scalable. Indeed both the I/O and computation throughput can be improved by
increasing respectively the number of disks attached to the slave nodes and the number of pro-
cessors per node or the total number of nodes. On the other hand, increasing the network
bandwidth can only be done by either switching to another technology (and there is no other
technology offering more than 100 Mb/s in the same price range as Fast-Ethernet today) by
changing the network topology (subnets) or by introducing an expensive high-speed crossbar
switch.

Under those circumstances, particular attention must be paid to the total volume of data that
travels across the network. Two variations of the parallelization have thus been considered.

int ComputeIntersectedExtents(PlaneExtractionParameters* parameters,
  ExtentReadRequest* request)

{ // C++ code }

void MergePlaneParts(Plane* screenBuffer, PlanePart* planePart)
{ // C++ code }

leaf operation PlanePartExtraction
in Extent* extent
out PlanePart* planePart

{ // C++ code }

operation Ps2Server::PlaneExtraction
in PlaneExtractionParameters parameters
out Plane plane

{
parallel while (ComputeIntersectedExtents, 

MergePlaneParts, Client, Plane plane)
(

ExtentServer[thisTokenP->ExtentServerIndex].ReadExtent
>-> 
ComputeServer[thisTokenP->ExtentServerIndex*

 NB_OF_NODES/NB_OF_DISKS].PlanePartExtraction
);

}

Figure 7-9: CAP pseudo-code of the parallel slicing algorithm (1st variation)
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1. The determination of the extents intersecting the desired slice (hit extents) is per-
formed on the master. This simpler variation corresponds to Figure 7-9. It ensures that the hit
extents are computed only once for each extracted slice. This computation is performed on the
master node which sends to the slave nodes through the network the individual extent extraction
and resampling requests.

2. The determination of the hit extents is performed on the slaves. In this configuration
only the geometric specification of the visualization rectangle travels through the network from
the master node to the slaves. Then each slave itself computes the hit extents and processes those
that are locally stored. This variation minimizes the network traffic at the expense of additional
computation, since the same determination of the hit extents is performed on each slave when
it could have been done only once on the master.

Experiments have shown that the network throughput is the first bottleneck when the number
of processing nodes increases. The overall system is therefore much better balanced in the sec-
ond variation. 

int DuplicateParameters(PlaneExtractionParameters* parameters,
 NodeLocalPlaneExtractionParameters* copy)

{ // C++ code }

int ComputeLocalIntersectedExtents( NodeLocalPlaneExtractionParameters* parameters,
 ExtentReadRequest* request)

{ // C++ code
// Compute the extents that intersect the visualization rectangle and that are stored on the current node

}

void MergePlaneParts(Plane* screenBuffer, PlanePart* planePart)
{ // C++ code }

leaf operation PlanePartExtraction
in Extent* extent
out PlanePart* planePart

{ // C++ code }

operation Ps2Server::PlaneExtraction
in PlaneExtractionParameters parameters
out Plane plane

{
indexed (int nodeIndex=0; nodeIndex<NB_OF_NODES; nodeIndex++)
parallel (DuplicateParameters, MergePlaneParts, Client, Plane plane)
(

parallel while (ComputeLocalIntersectedExtents, 
MergePlaneParts, Client, Plane plane)

(
ExtentServer[thisTokenP->ExtentServerIndex].ReadExtent
>-> 
ComputeServer[thisTokenP->ExtentServerIndex*

  NB_OF_NODES/NB_OF_DISKS].PlanePartExtraction
);

);
}

Figure 7-10: CAP pseudo-code of the parallel slicing algorithm (2nd variation)
Page 112



DigiPlan: Volume Slicing with Discrete Planes
Parallelization considerations

¾

Note that switching from one parallelization strategy to the other is just a matter of changing
a few lines of the CAP parallel code as shown in Figure 7-9 and Figure 7-10.

7.3.4. Determination of the hit extents

The determination of the extents hit by the visualization rectangle uses results in discrete
geometry that were developed in the first half of this work, namely the covering of a digital par-
allelogram by a low resolution grid (Section 5.3). Indeed the projection of the extent grid on the
projection plane forms a tessellation of that plane by rectangular tiles. The algorithm of
Section 5.3 allows to find very efficiently the tiles that cover the projection of the visualization
rectangle which is a parallelogram in the general case. The set of tiles that intersect the parallel-
ogram is nothing more than the projection of the extents hit by the visualization rectangle.
(Figure 7-11).

Knowing the projection of the hit extents and the equation of the plane supporting the visual-
ization rectangle, one can determine the elevations of the hit extents. Depending on the extent
dimensions, it is possible for the extraction rectangle to intersect two or more vertically adjacent
extents. Therefore, for each projection of an intersected extent, the algorithm evaluates the min-
imum and maximum elevations of the slicing plane above. Since the plane is a linear geometric
object, the process can be optimized by noticing that the extremal values of the elevation are
reached above two of the four corners of the extent projection and that those corners are the
same for all the extent projections.

Figure 7-11: Determining the extents hit by the visualization rectangle
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where
tio is
Let us consider a visualization rectangle lying on a plane of normal  where  is

the biggest coordinate in absolute value. In this case the projection plane is the plane containing
the  and  axes. Figure 7-12 summarizes where the corners of minimum/maximum elevation

are situated on the extent projections according to the values of  and .

Moreover, much in the same way as elevations of adjacent voxels can be computed incremen-
tally in the naive digital plane scanning algorithm, the min/max elevations on extent projection
boundaries can also be calculated incrementally. Therefore the determination of the hit extents
is a pure discrete problem solved with a pure integer arithmetic algorithm.

7.3.5. Non-isometric volumes

Due to technical constraints, biomedical 3D images often are anisotropic, i.e., the resolution
of the acquisition along the three axes is not identical. Thus the pixel size on each of the 2D
slices making up the 3D dataset may be smaller than the distance between two consecutive
slices. For instance, the Visible Human Male dataset scanned by the U.S. National Library of
Medicine, Bethesda, has a resolution of one third of a millimeter on each slice while the slices
are spaced at a one millimeter interval. 

This is undesirable since most visualization algorithms, including ours, require the voxels to
have the same size along the three main directions. Therefore medical image visualization often
includes a preprocessing step of the whole 3D dataset consisting in the interpolation of the miss-
ing voxels in order to build an isotropic dataset having the same resolution along the three main
axes [52]. Sophisticated methods for interpolating the missing slices have been developed. For
instance Ruprecht and Müller proposed a method inspired from morphing techniques 
each slice is deformed into the next one [49]. However if the slice/inter-slice resolution ra

Figure 7-12: Corners of max/min elevation on the extent grid projection
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not too high, a computationally less expensive linear interpolation between the slices gives good
results and is therefore often preferred.

However doing the interpolation during a preprocessing step, though it ensures each voxel is
interpolated only once, results in an artificial image size increase that causes lower overall per-
formance of the visualization system as more data needs to be stored and read from the disks.
This is especially true for algorithms like the proposed digital plane scanning algorithm which
ensures each interpolated voxel is accessed at most once.

Therefore we propose a solution where voxels in missing slices are resampled on the fly. This
is made possible by using a double set of coordinates. Physical coordinates relate to the original
3D dataset while virtual (or absolute) coordinates relate to an abstract object representing the
volume as if it had been previously appropriately resampled (Figure 7-13). The digital plane

scanning algorithm operates in the virtual coordinate system in the exact same way as if the
whole dataset had been previously resampled. Then the pseudo-function
GetValueOfVoxelAt (Figure 7-5) is simply extended so as to interpolate voxels that do not
actually exist in the volume. For instance, consider the function is asked for the value of voxel

 in the volume of Figure 7-13, it simply returns a value interpolated from the voxels of

physical coordinates  and .

One additional difficulty arises from partitioning the volume into extents. In some situations,
the voxels needed to interpolate a virtual voxel may reside in different extents. This situation
creates a prejudicial dependency on neighboring extents which can affect overall performance.
Thus in a worst case situation, two layers of extents could be read to recreate a missing slice
resulting in twice as much data as necessary being read from the disks. To solve this problem,

Figure 7-13: Physical and virtual coordinate systems

A sample 3D dataset where the in-slice resolution is three times as high as the inter-
slice resolution.
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we introduce redundancy in the storage format through the creation of so called fat extents. A
fat extent contains as a last layer in the undersampled direction, an additional layer of voxels
which is copy of the first layer of the next adjacent extent in that direction. Figure 7-14 shows

how this principle would be used for a volume needing reconstruction of slices along the -axis.
If resampling is needed in more than one direction, the mechanism can be extended and fatness
layers can be added for up to the three directions ,  and . 

The volume size increase thus created is relatively small. For instance if the extent size in the
 direction is 32, then using -fat extents makes the volume 1/32nd bigger.

7.4. Measured performances

In this section we provide the results of experimental performance measurements made on the
DigiPlan parallel slice extraction application. Naturally, the performance of the overall system
largely depends on the performances of the underlying PS2/CAP parallelization framework and
on the fine-tuning of the parallelization strategy with respect to the available hardware. Detailed
results from this viewpoint can be found in [43] and [44]. Performance figures in this section
are courtesy of Vincent Messerli [44].

The measurements were made on a parallel system consisting of a network cluster of 200 MHz
Bi-PentiumPro PCs, 1 client (master) + 1 to 5 server nodes (slaves), connected by a Fast Ether-
net network at 100 Mbits/s. Each of the slave PCs was loaded with up to 4 SCSI-2 strings (3
disks per string) each offering a maximum nominal throughput of 10MBytes/second. The

Figure 7-14: Volume partitioning using fat extents
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experiments consisted in extracting 512x512 24 bit color slices from the Visible Human male
dataset (13 GB). 

Figure 7-15 shows that the system scales linearly as well with the number of disks as with the
number of server nodes. 

The system reaches its peak performance at 4.8 512x512 color images per second on a con-
figuration consisting of five server nodes and one client. At this point the processors of the
server nodes are loaded at 80% while the client node processor is loaded at nearly 85%
(Figure 7-16). The weak spot of the system seems therefore to reside in the limited processing

power of the client node which could be attributed to the extraction algorithm, or more precisely
to the merging of the received plane parts into the final display buffer. Actually Figure 7-16
shows that the master node spends 60% of its processing time on network operations and less
than 15% on computation. In fact the bottleneck resides in the limited throughput of the client

Figure 7-15: Scalability across the number of slave PCs and disks

Figure 7-16: Master and slave processor utilization
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node’s interface to the network. Therefore the most efficient optimization would not come
an improvement of the merging algorithm but rather from an intelligent network adapter w
could off-load network protocol related operations off the master node’s main CPU2O
technology).

7.5. The Visible Human Slice Server

The most spectacular application of the DigiPlan library for the extraction of digital pl
from 3D voxel-based volumes is certainly The Visible Human Slice Server [54]. This web site
(http://visiblehuman.epfl.ch/) which was unveiled to the public in June 1998 h
served nearly 140’000 slice extraction requests in less than 5 months and has been laude
press and the Internet community.

Thanks to this application, the public is able to extract interactively high-resolution ob
slices of arbitrary orientation from within the Visible Human male dataset. This unpreced
high-quality volume consists of axial cryosection full-color photographs of a complete hu
body from head to toe. Each axial section has a pixel resolution of one third of a millimete
inter-slice resolution being 1 mm. The total amount of data represents 13 GB. A smaller v
comprising only the head of the visible human (1 GB) and an MRI dataset (100 MB) are
available on-line for browsing. A similar dataset of a female body will also be available i
near future.

When a visitor accesses the web site, a Java applet is downloaded to his World Wid
browser. This applet allows him/her to choose a 3D volume to browse, to specify the para
of the slice to extract (orientation, size) either interactively using the mouse or by filling 
text fields. The user can then ask for the corresponding slice from the server. The reques
to the server by the Java applet through the Internet. The server extracts the correspond
using the DigiPlan algorithm presented throughout the previous sections, compresses it 

Figure 7-17: The Visible Human Slice Viewer Java applet
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JPEG compression scheme (for faster transfer over the Internet) and sends it back to the Java
application on the client for display.

The experimental configuration of the Web parallel server extends the traditional CAP/PS2

hardware architecture (Figure 6-3) by adding a web server (HTTP server) process on the client
node which thus becomes the interface between the local network cluster where the slice extrac-
tions are performed and the Internet (Figure 7-18).

The configuration currently in production as a web server, actually consists of a single dual-
Pentium II 300MHz PC with 16 disks attached onto which the Visible Human dataset is striped.
Oblique slices are extracted and compressed in nearly one second, which given the current
bandwidth of the Internet can be considered as an interactive rate. The overall capacity of the
system could thus theoretically reach 3’000 extractions per hour in this configuration. S
an higher rate be desired, the system could be easily scaled up by adding slave storage a
putation nodes with no need for an application rewrite. 

7.6. Summary

We have presented in this section an innovative approach to extract planar slices of a
orientation from a 3D discrete volume. Such an application is a fundamental tool in biom
imaging, where volumes produced by modalities sucha as X-ray CT, MRI or PET are us
teaching purposes as well as for diagnosis. While previous methods either used floatin
arithmetic, expensive dedicated hardware or attempted to use discrete properties of the

Figure 7-18: Architecture of the Visible Human Web Server
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in an awkward manner, our approach is purely software-based and relies on rigorous results of
discrete geometry to draw maximum advantage of the discrete nature of the volumetric data.
The key features of the proposed algorithm are:

• The oblique slice is extracted with a discrete plane scanning algorithm using integ
arithmetic. 

• The algorithm only needs a 2D resampling step which can be performed incremen
using integer arithmetic and a nearest neighbor interpolation. This resampling step
be used to implement zooming at no extra cost

• The determination of the volumic extents intersected by the slice uses the result 
established in Section 5.3 about the covering of a digital parallelogram by a regula
rectangular plane tesselation. The hit extents are therefore determined exactly, in 
time using integer arithmetic.

• Non-isometrically sampled volumes are resampled on the fly. The notion of fat ext
avoids all data dependencies in this case: interpolating a missing voxel never need
from two different extents.

• The algorithm was shown to be well suited for parallelization and was integrated in
the CAP/PS2 parallelization framework where it showed good performance, allowing
the overall system to scale linearly up to 6 PCs working in parallel. 

The Visible Human Slice Web Server further demonstrates the qualities of the extraction
rithm and the underlying parallelization framework: scalability, efficiency and robustn
Another notable aspect of this algorithm is its generality. Though we emphasized biom
imaging, such a parallel digital slicing algorithm could find many other application fields
physics, meteorology or geology to name a few. 
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8 Extraction of Digital Generalized Cylinders

This chapter presents an algorithm for extracting ruled surfaces out of 3D discrete volumes such
as those produced by medical tomographic imaging devices. The algorithm based on discrete
geometry can be parallelized to enable working with very large images. It offers a valuable exten-
sion to the simpler planar slicing algorithm presented in the previous chapter.

8.1. Introduction

As explained in the previous sections, most physicians still feel more comfortable today with
the observation of two-dimensional views extracted from 3D volumetric datasets acquired by
biomedical imaging modalities such as CT, MRI, PET, etc... Having built a habit of observing
radiological images with restricted orientations during their education, it is often difficult for
them to extract valuable medical hints from three-dimensional representations. However the tra-
ditional axial, sagittal, and coronal image slicing orientations are more and more considered as
too much of a limitation. Extracting oblique slices of arbitrary orientation is considered as an
important improvement (Chapter 7). 

In some situations though, oblique plane slices are still not enough. For instance, slicing
through the middle of several vertebrae with a plane is not possible because of the natural cur-
vature of the vertebral column especially in regions of high curvature like the lumbar vertebrae
(Figure 8-1). The jaw is another region where plane slicing is too limited to get a full view of

the teeth from left to right. Such views would nevertheless be very useful for dentists to design
orthodontic devices. Without having recourse to three-dimensional visualization techniques, the

Figure 8-1: Limitations of oblique plane slicing

Of the three vertebrae in the region of interest, only one is visible in its entirety on the
plane slice.
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solution to this kind of problem resides in an extension of the usual slicing algorithms to more
complex surfaces. 

8.1.1. Ruled surfaces and cylinders

A class of surfaces called ruled surfaces is of particular interest. Differential geometry defines

a ruled surface  as a differentiable map defined by two elements: a curve  of 

and a parameterized family of directions  of : 

(8-1)

The curve  is called the directrix of the surface while the family of lines  passing

through  and parallel to  are called rulings of the surface. Ruled surfaces having a con-
stant tangent plane along each ruling are called developable surfaces. Those surfaces can be
“unfolded” and “flattened” with no deformation, which is a fundamental characteristic in
case, since we want to avoid three-dimensional visualization. The most common types of
opable surfaces are cones and cylinders [7] (Figure 8-2).

We shall focus on cylinders. A cylinder is a ruled surface whose directrix is contained i
plane and whose rulings are of constant direction. Note that this notion encompasses bu
restricted to the usual circle-based cylinders (Figure 8-3).

Figure 8-2: Development of cones and cylinders

Figure 8-3: A generalized cylinder
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Cylinders whose rulings are normal to the plane of the directrix are particularly well suited to
two-dimensional viewing. Let us consider such a cylinder defined by the differentiable map

:

(8-2)

verifying the following additional conditions:

(8-3)

where  is parameterized by its arc length .

The total differential of  writes:

(8-4)

Since  is parameterized by the curve length  then . Together with the addi-

tional conditions of Equation 8-3, this indicates that the map  preserves lengths locally and
introduces no deformation which is a key point for the visualization of cylinders on a flat
display.

Also, specifying a cylinder verifying Equation 8-3 only requires determining the plane con-
taining the directrix and then the directrix itself as a 2D curve on this plane. This makes the
interaction with the user very simple with no need for a three-dimensional user-interface or
pointing device.

8.1.2. Digital cylinders

In Section 2.1.3, we recalled that the definition of discrete surfaces is a complex matter and
that several approaches exist. In Chapter 7, we have seen how naive digital planes were partic-
ularly well suited for slicing through 3D discrete volumes thanks to their appropriate
connectivity and ease of scanning. It is therefore natural to look for similar properties in what
we will define to be digital cylinders. Interestingly enough, some research has been done in the
field of the incremental recognition of digital planes on discrete surfaces (discrete
polyhedrization) [15]. In the same way as a digital curve is equivalent to a discrete polygonal
line, i.e., a sequence of digital straight line segments, a thin digital surface can be conveniently
represented as a juxtaposition of digital plane patches. Chapter 4 exploits this idea to build dig-
ital representations of Bézier curves and surfaces. Digitization of cylinders can follow the
principles, and in fact, the properties of cylinders as continuous surfaces even eliminate
of the problems mentioned in Chapter 4, namely the normal inconsistencies between a
planar patches. 
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Thus we build a naive digital cylinder by first polygonalizing its directrix  on the direc-

trix plane  using the algorithm of Chapter 4 (for the ease of user interaction, we restrict the
directrices to natural splines, equivalent to Bézier curves). The new cylinder defined b
polygonalized directrix, denoted , on plane  consists of a series of adjacent plan

ets. (Figure 8-4). The discrete equivalent to this surface is the union of a set of digital

patches each fitting one of the facets (in the sense of a best approximation of an euclidea
by a naive digital plane). 

Appropriate connectivity at the edges can be guaranteed following ideas develop
Section 4.5.2. Each digital plane fitting one of the facets of the polygonal cylinder is defin
the set of integer points contained between two euclidean boundary planes, one on the
the facet and one on the right1. The intersections of consecutive euclidean boundary plane
the same side of the cylinder make up the edges of a boundary cylinder, we call digital cy
the set of integer points contained between the two euclidean boundary cylinders (Figur
This set of points is 18-connected.

8.2. Algorithm 

8.2.1. Overall Design

From the user point of view, the interaction proceeds in three steps (see Figure 8-6):

1. Specification of the plane containing the directrix (directrix plane). The necessary 
parameters (normal, center, up direction, width and height) can be specified either inter-
actively or by means of text input fields, just like in the Visible Human Slice Server 
user interface (see Section 7.5)

2. Specification of the directrix. In theory, the directrix is an arbitrary planar curve. On 
computer systems, common usage has shown that parametric curves of degree three 

Figure 8-4: Polygonal cylinder

1. The parametrization of the directrix induces an orientation of the curve and hence a notion of left and 
right given a normal to the directrix plane.
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(splines or Bézier curves) provide a great flexibility and can be manipulated 
intuitively [23]. Therefore we restrict the directrix to this type of curves. The user sp
fies a series of interpolation points on the directrix plane and the natural spline that
interpolates these points is drawn. Further control of the shape of the curve is then
sible by moving the points or manipulating the tangents to the curve at the arc junc
The surface width, i.e., the length the cylinder will span on each side of the directri
plane (interval of the parameter  in Equation 8-2) is also specified at this point.

3. Visualization of the extracted surface

Internally, the extraction of the cylinder for visualization proceeds as follows. In a first step,
the directrix is polygonalized. The coordinates of the vertices of that polygonal line in the three-
dimensional coordinate system of the volume are computed and this defines a digital polyhedral
surface (digital cylinder) that fits the cylinder. Then the facets of the digital cylinder are

Figure 8-5: Digital cylinder boundaries

Figure 8-6: User interaction for the extraction of cylinders
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extracted as digital rectangles (using the DigiPlan algorithm, Chapter 7). Finally the 2D indi-
vidual facets are merged in the final display buffer. (Figure 8-7).

8.2.2. Mapping from the directrix plane coordinates to the volume coordinates

The proposed surface extraction algorithm involves two different coordinates systems. The
first one, called virtual (or absolute) coordinate system, denoted  is related to the 3D
volumetric dataset (isometrically resampled if necessary, see Section 7.3.5). The second one,
called directrix plane coordinate system, denoted  is related to the rectangle upon
which the user specifies the directrix (Figure 8-8). Interpolation points given by the user to
define the directrix are expressed by means of pairs  of coordinates expressed in

. The coordinates  of these points in the absolute coordinate system can be
computed by the following elementary relation:

(8-5)

where ,  and  represent the respective absolute coordinates of

,  and  (Figure 8-8).

Figure 8-7: Overview of the surface extraction algorithm
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8.2.3. Weighting at facets joints

Section 8.1.2 defined 18-connected digital cylinders. In fact, appropriate discrete connectivity
is not enough to display the surface on the screen grid. Indeed, in the general case, a discrete
cylinder does not have the functionality property of naive digital planes, i.e., there is no trivial
map between the cylinder and a connected subset of . Therefore the display of the surface
becomes more intricate. The key point for accurate display of the surface is the preservation of
the distances so as to avoid deformations. However, arc lengths of the polygonalized directrix
are irrational in the general case, whereas facets extracted as discrete rectangles have integer
height. Consequently the pixel grids of the extracted facets do not match the pixel grid of the
final display buffer and the facets need to be resampled into that final buffer. This situation is
illustrated in Figure 8-9 for a digital cylinder consisting of two facets. One can see that due to

 not being an integer, the grid of facet 1 must be shifted with respect to the grid of
the final display buffer, i.e., facet 1 needs resampling when merged into the final surface display
buffer.

This final resampling step, though somewhat optimizable since resampling weights are con-
stant for a given facet, represents an additional computational cost to the surface extraction
algorithm. Fortunately by rethinking the facet extraction, this overhead can be avoided.

Figure 8-8: Coordinate systems for the extraction of surfaces

Figure 8-9: Merging facets into the final display buffer
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Section 7.2.3 introduces the resampling operation that maps the intermediate projection of a
discrete rectangle into the viewing space. This resampling allows to extract rectangles centered
on non-integer points of the discrete lattice of the 3D volume. This characteristic can be conve-
niently used to avoid resampling the facets into the display buffer. Indeed by shifting the center
of the facets and incrementing their height appropriately we can align the facet grids with the
screen buffer grid. Figure 8-9 shows that the needed center shift is essentially vertical with
respect to the final display grid, which means that the center of each facet  needs to be shifted
by a certain  where . Figure 8-10 which represents the scene in projection on the

directrix plane , shows how this shift  is calculated (for a directrix consisting of
three edges). 

Small dots represent the horizontal pixel boundaries of the screen display grid. The directrix
vertices are denoted . The facets vectors  are defined by the relation 

(8-6)

The length and position of the facets that are extracted are not defined by the segments

 but rather by  where  and  are defined by the following recurrence:

(8-7)

 is calculated so as to add an offset that compensates exactly the non-integer length of the
 facet, ensuring that the grid of facet  is well aligned on the screen grid.  simply rounds

the facet height to the smallest greater integer.

Figure 8-10: Facet shifts and height increase (projection on the directrix plane)
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By proceeding this way, facets extracted as discrete rectangles can be mapped directly into the
surface display buffer with no additional resampling of the whole facet. However Figure 8-9
and Figure 8-10 indicate that adjacent facets may superimpose along a pixel line at their junc-
tion. This is the case for instance on the fifth pixel line of Figure 8-9 and Figure 8-10. At these
junction lines the two adjacent facets must be blended together into the surface buffer. The con-
tribution of each facet to the junction line is simply determined by the geometry of Figure 8-10.
That is, the blending weights of facets  and  at their junction is given by:

(8-8)

8.3. Parallel implementation

The extraction of digital cylinders can be performed in parallel, following the same ideas as
the extraction of oblique naive digital planes. Again, the 3D volumetric dataset is physically
divided into small parallelepipedic subvolumes called extents that are distributed among the
individual disks connected to the system. The flow-chart of Figure 8-11 describes how the indi-
vidual operations consistuting the surface extraction can be both pipelined and carried out in
parallel. 

Pipelining occurs at four levels: 

• a plane part can be extracted from an extent and be resampled while the next exte
read from the disk

Figure 8-11: Pipelined/parallel surface extraction flow-chart
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• a plane part can be merged into a facet buffer while the next plane part is being 
extracted

• a facet can be merged into the screen buffer while the next facet is being extracte
the same storage and processing node

• finally, a surface can be visualized while the next one is being extracted in case a 
request for browsing through the volume was made

Parallelism can be achieved at two levels:

• several extents can be fetched simultaneously from the disks to increase I/O throu

• digital plane parts can be extracted from several extents at the same time if severa
processors are available. 

The parallel surface extraction algorithm shares most of the characteristics of the digita
extraction algorithm that resides at its core. The extraction of plane parts from each exte
does not present any data dependency with the other extents allowing all the slave comp
nodes to perform the extraction in parallel with no need for synchronization or data exch
The only communications take place between the client node (master) and the comp
server nodes (slaves) when the extraction request is sent to the slaves and the results ar
back.

Figure 8-11 shows that the flow-chart for surface extraction embeds the flow-chart of 
extraction. The CAP language allows such compositionality of operations and lets the pro
mer define pipelined/parallel operations including other lower-level pipelined/par
operations. The actual implementation can thus be made very simple (Figure 8-12).

8.3.1. Possible variations

The parallelization strategy proposed in the previous section actually hides a subtile pitfa
might compromise the performance of the algorithm. Indeed a potential problem lies in th
that a given extent may be intersected by several of the planes making up the facets of 
face. In a usual configuration, each extent lying close to a facet joint may intersect the two
meeting at the joint, but in more unusual configurations where the extents are big and/or t
ets are particularly narrow (which happens when the curvature of the surface is importan
extent may be intersected by a significant number of planes. 

In the previous parallelization design, the extraction request is first splitted into a set of e
tion requests for planes and then each individual plane extraction request is itself divide
volumic extent reading and processing requests. This implies that the same extent m
requested and read from the disk several times for different planes which is clearly not op
In fact, things are not so bad however because the PS2 parallel file system upon which the appl
cation relies, includes a built-in cache system. Extents read from the disk are stored and
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memory using a “least recently used” cache mechanism1. A reasonable cache size ensures t
no extent needs to be read from the disks more than once. Nonetheless this hides the de
only partially since fetching an extent from the cache implies a small additional overhea
can be avoided with a better parallelization strategy.

An alternative to the previous design consists in first computing all the extents intersec
the surface and grouping the plane extraction requests on a per extent basis. Then, 
extent, the plane parts corresponding to each plane it intersects are extracted. With this 
each extent needs to be fetched only once, thus avoiding any overhead due to multiple
fetches even if a cache mechanism is available. Figure 8-13 shows the flow-chart corresp
to this parallelization strategy.

The computation of the extents hit by the surface is made facet by facet. For each inte
extent a list is built that contains an indication of each facet of the surface that interse
extent. A fast mechanism for retrieving the list corresponding to a given extent is therefor
essary. A hash-table is a suitable data structure since it provides constant time acce
elements provided a good hash-code function can be devised which is the case in this 
tion. Indeed the problem has spatial coherency: the surface intersects a limited connecte
of the extents contained in the volume. Therefore a modular mapping of the three coor
of the extents provides a very good hash function.

For instance, let us consider a 3D image volume divided in cubic 32-pixel-sided exten
us assume also that most extracted surfaces are smaller than 1024x1024 pixels. That me

int ComputeSurfaceFacets (SurfaceParameters* parameters,
PlaneExtractionParameters* request)

{ // C++ code }

void MergeFacets(SurfaceView* screenBuffer, Plane* facet)
{ // C++ code }

operationPs2Server::PlaneExtraction
in PlaneExtractionParameters* parameters
out Plane* plane

{ // Defined in Figure 7-9 }

operationPs2Server::SurfaceExtraction
in SurfaceParameters* parameters
out SurfaceView* surface

{
parallel while (ComputeSurfaceFacets, 

MergeFacets, Client, SurfaceView* surface)
(

PlaneExtraction
);

}

Figure 8-12: CAP pseudo-code for the extraction of surfaces

1. Once the cache is full, each newly read extent replaces the least recently used one in the cache
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extracted surfaces are comprised in a 32-extent-sided cube. Therefore we allocate a hash-table
with  entries (128 KB on a system with 32 bits pointers). The extent of coordinates 
is stored at index . This index can be computed
efficiently with bit-level boolean operations. All images smaller than 1024x1024 pixels are
guaranteed to store at most one extent per hash-table entry, while images of sixe 2048x2048 or
smaller may store at most two extents per hash-table entry and so on. This shows that even for

Figure 8-13: Alternative pipelined/parallel surface extraction flow-chart
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 a 2D
blique
xten-
large extracted surfaces, this hash-table solution should provide better access times than any
other data structure.

8.4. Summary

This section presented a novel method for extracting ruled surfaces (more specifically gener-
alized cylinders) from 3D voxel-based volumes such as those produced by most medical
imaging modalities. The extraction of cylinders that can be “flattened” and displayed on
display while still preserving lengths, considerably enhances the possibilities offered by o
plane slicing which remains the fundamental tool for medical image visualization. This e
sion is intuitive and simplifies user interaction. 

int ComputeSurfaceExtents(SurfaceParameters* parameters,
 ExtentReadRequest* request)

{ // C++ code }

void EmptyMerge(void*, SurfaceID*)
{ // Placeholder merge function }

int SelectNextExtentFacet(ReadExtent* extent, ExtentFacetExtraction* request)
{ // For each read extent, generate the necessary plane extraction requests }

void MergeFacetParts(SurfaceFacets* facets, FacetPart* facetPart)
{ // Merge a plane part into the appropriate facet buffer }

leaf operation FacetPartExtraction
in ExtentFacetExtraction* request
out FacetPart* facetPart

{ // C++ code }

leaf operation CombineFacets
in SurfaceID* input
out SurfaceView* output)

{ // C++ code }

operationPs2Server::SurfaceExtraction
in SurfaceParameters* parameters
out SurfaceView* surface

{
parallel while (ComputeSurfaceExtents, 

EmptyMerge, Client, SurfaceID* surface)
(

ExtentServer[thisTokenP->ExtentServerIndex].ReadExtent
>->
parallel while (SelectNextExtentFacet,

MergeFacetPart, Client, SurfaceFacets facets)
(

ComputeServer[thisTokenP->ExtentServerIndex*
 NB_OF_NODES/NB_OF_DISKS].FacetPartExtraction

)
) 
>-> CombineFacets;

}

Figure 8-14: CAP pseudo-code for the alternative surface extraction strategy 
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The algorithm is based on a definition of digital cylinders that best fit a continuous cylinder
by means of adjacent digital plane patches. Digital cylinders can thus be extracted using a digital
plane scanning algorithm which was shown to be particularly efficient in the previous chapter.
The algorithm can also be parallelized in order to be able to work with very large 3D volumes.
Two parallelization strategies were presented: a first one that favors code reuse by relying on
the parallel digital plane scanning algorithm and a second one that optimizes the access to the
volumic extents making up the 3D volume.
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9 Conclusion

Discrete geometry is a new theoretical framework dealing with geometric objects consisting
of denumerable sets of points such as those that are generated and manipulated by computers.
This discipline is at crossroads between pure abstract mathematics and concrete computer based
applications for which it brings an interesting alternative to algorithms based on euclidean
geometry. The present research work, divided into two parts, illustrates this situation.

First, we presented a collection of theoretical results related to current problems in discrete
geometry. Discrete geometry and more particularly, the subfield called arithmetic geometry
which we focused on, are indeed new subjects of research where wide areas remain to be
explored. Among the contributions, we presented a new approach to the study of 3D digital
lines. Studying 3D digital lines is significantly more complex than 2D digital lines. Thanks to
this new viewpoint we could derive a definition and interesting theorems about the combinato-
rial structure of 3D digital lines. Then we introduced a new criterion to polygonalize B
curves and surface patches efficiently and in a consistent way with existing results in d
geometry. Unlike previous approaches this criterion does not rely on an arbitrary precisio
stant but only on the geometry of the lattice of integers and the definition of naive digita
and planes. Finally we considered the multi-scale discreteness problem which deals with
lishing the relations between the discretizations of geometric objects at different resolu
Using two different methods, we presented a solution to the determination of the cover
digital lines and parallelograms by regular rectangular tesselations of the plane. Wh
method used for digital lines was purely arithmetic, the method used for digital parallelog
was geometric, based on the morphological dilation operation, thus building the first b
between mathematical morphology and discrete geometry.

In the second half of this work, we illustrated the benefits of using discrete geometry for
puter imaging with two applications: the extraction of oblique planes and ruled surfaces
3D discrete images such as tomographic images commonly found in medical imagin
showed the importance of such applications for radiologists. The extraction of oblique sl
based on a naive digital plane scanning algorithm using integer arithmetic and avoiding
tri-linear floating point operations. This algorithm was shown to be suitable for paralleliz
using the CAP/PS2 framework. The resulting full-software implementation is highly scala
and able to run on architectures ranging from a single isolated PC with one or several dis
network cluster of PCs with up to 12 disks each. The measured performance figures 
oblique slice extraction showed that the extraction algorithm itself is not the bottleneck 
considered parallel architectures. Furthermore the presence of this application on the Int
the spectacular Visible Human Slice Server for more than seven months at the time of th
ing, has also demonstrated its high stability which can be attributed to some extent 
underlying usage of discrete geometry. The extraction of digital generalized cylinders wa
Page 135



Conclusion9

estions,
ovided
hinner
k we

search

g dis-
plex

ces are
s on a
a poly-
in that
ppro-

che in
recon-
 have

e ray
nts of
ot nec-
sented as a natural and useful extension of the oblique slicing algorithm. Digital generalized
cylinders were defined as the discrete counterpart of euclidean ruled surfaces having a 2D spline
for directrix and rulings orthogonal to the plane of the directrix. We showed that these objects
could be equivalently considered as an 18-connected juxtaposition of naive digital plane pieces
and derived from this result an extraction algorithm based on the naive digital plane scanning
algorithm. We also showed that thanks to a careful choice of the geometrical parameters of the
plane pieces, additional resamplings can be avoided. Furthermore a parallelization strategy that
optimizes the number of accesses to the disks has been proposed. Thus the extraction of digital
generalized cylinders incurs a relatively small overhead when compared to the simpler oblique
slicing algorithm.

While this work tries to bring solutions to some problems, it also raises various questions and
opens the doors for future research. On the theoretical side, none of the subjects that have been
considered here has been fully explored. The theory of 3D digital lines is certainly the most
ambitious and has room for a lot of new developments: can we define arithmetically the digital
line that corresponds to the digitization of an euclidean line by the closest integer point ? How
can we control the connectivity of a digital line from its projection on its normal plane ? Can
subsets of the projection lattice of  other than squares define connected subsets of ? Can
those subsets be called digital lines ? Can the results be extended to higher dimensions ? The
approach to the polygonalization of Bézier surface patches has also left some open qu
especially with respect to the connectivity of adjacent patches. Eric Andrès et al. have pr
some directions for 6-connected patches [4] but a more in-depth study is needed for t
ones. Multi-scale geometry is also an interesting field for further investigations and the lin
sketched between mathematical morphology and discrete geometry might be a fruitful re
direction.

The applications we developed in this work are a clear example of the benefits of usin
crete geometry for digital image processing algorithms. The extraction of more com
surfaces is a natural extension that comes to mind. Depending on how these surfa
defined, the problem can be more or less intricate. The extraction of digital surfaces relie
representation of surfaces by digital planar facets, therefore for general digital surfaces, 
hedrization algorithm is needed. Isabelle Debled has accomplished a reference work 
field [15]. The proposed algorithm remains a little cumbersome however, possibly given a
priate restrictions, a simpler version could be derived. Discrete geometry could find a ni
other fields of computer graphics or medical imaging, e.g., surface tracking, tomographic 
struction, volume visualization, ray-tracing, etc... In all these fields, discrete approaches
been proposed (cf. the pioneering work of A. Kaufman and his team on discret
tracing [57]). These domains could certainly find great benefits in the recent developme
arithmetic geometry as would be the case for other applications involving sampled data, n
essarily images.

¾2 ¾3
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