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Abstract
This paper provides a theoretical connection between two different mathematical models
dedicated to the reflectance and the transmittance of diffusing layers. The Kubelka–Munk
model proposes a continuous description of scattering and absorption for two opposite diffuse
fluxes in a homogeneous layer (continuous two-flux model). On the other hand, Kubelka’s
layering model describes the multiple reflections and transmissions of light taking place
between various superposed diffusing layers (discrete two-flux model). The compatibility of
these two models is shown. In particular, the Kubelka–Munk reflectance and transmittance
expressions are retrieved, using Kubelka’s layering model, with mathematical arguments using
infinitely thin sublayers. A new approach to the Kubelka–Munk expressions is thus obtained,
giving, moreover, new details for physical interpretation of the Kubelka–Munk theory.

Keywords: Kubelka–Munk model, Kubelka model, light scattering, reflectance, transmittance,
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1. Introduction

Modelization is an essential part of scientific activity. Rather
often, the mathematical apparatus of a model can be as
important as, for example, the physical properties it sustains.
Indeed, the core of the mathematical part can convey by itself a
large part of the general meaning of the model. Such will be the
case, in this article, for the exponential of a matrix, that gives a
key for understanding the relationship between continuous and
discrete two-flux models, a role that has not been noticed until
now.

The continuous two-flux model results from the well-
known Kubelka–Munk theory [1, 2], used in an extremely
wide range of applications. The discrete two-flux model
was introduced later by Kubelka [3]. Both continuous
and discrete two-flux models describe the evolution of two
oppositely directed light fluxes, assumed perfectly diffused, as
functions of their depth within the diffusing medium. They
indirectly encapsulate into equations the three complementary
phenomena taking place in elementary layers of the medium,
i.e. reflection (also called backscattering), transmission and/or

absorption. Their main difference lies in the assumptions made
on the diffusing medium. The continuous model requires a
homogeneous scattering medium, i.e. with the same scattering
and absorption properties whatever the depth. Selecting an
infinitesimally thin sublayer located at an arbitrary depth, the
variation of the upward flux and of the downward flux is
described by the famous Kubelka–Munk differential equation
system (3). The solutions of this system are analytical
expressions for the reflectance and the transmittance of a layer
as functions of its thickness. In the discrete model, the medium
is assimilated to superposed diffusing layers, without concern
about their thickness or their homogeneity in depth. The
superposed layers may be different, with their own reflectance
and transmittance at their upper and lower sides. The upward
and the downward fluxes are determined by an analysis of the
multiple reflections and transmissions taking place between
the layers. Therefore, choosing between Kubelka–Munk and
Kubelka models fundamentally depends on the nature of the
considered specimen. Due to their simplicity, the two-flux
models should be restricted to highly scattering media [4].
Various attempts have been made recently to improve the
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Kubelka–Munk model, especially in the description of the
lateral propagation of light. They rely on extended continuous
models [5, 6] and/or use discrete approaches such as random
walks [7], and Markov chains [8]. In this context, studying
the interconnection of the classical two-flux models may be
helpful.

Our study is concentrated on homogeneous diffusing
layers satisfying the applicability conditions of both the
Kubelka–Munk and the Kubelka models. On the one hand,
the Kubelka–Munk model gives directly analytical expressions
for the layers reflectance and transmittance, being given the
scattering and absorption coefficients. On the other hand, there
exists a relationship between these scattering and absorption
coefficients and the reflectance and transmittance of infinitely
thin sublayers. Then, a thick layer is modeled as a pile of
these sublayers. Its reflectance and transmittance are given by
Kubelka’s model. Our aim is to show that they are identical to
those given by the Kubelka–Munk model. For this purpose, a
new matrix formalism will be introduced.

The present paper is structured as follows. The Kubelka–
Munk model and the Kubelka model are first recalled in
sections 2 and 3 respectively. In section 4, we show how
the Kubelka–Munk expressions can be combined according to
Kubelka’s discrete model. Then, we treat the special case of
infinitely thin layers in section 5 and model a superposition
of infinitely thin layers according to the discrete model in
section 6. Section 7 deals specifically with reflectance,
for which the Kubelka–Munk expression is obtained using
continued fractions. As a matter of conclusion, in section 8,
the proposed mathematical developments are given a physical
interpretation.

2. The Kubelka–Munk model

Let us consider a homogeneous layer with thickness h
characterized by its absorption coefficient K and its scattering
coefficient S, and considered without its interfaces with the
surrounding medium. In this layer, the diffuse irradiance ir

propagates upward and the diffuse irradiance it propagates
downward. Both ir and it are functions of their depth x
in the layer. Depth 0 corresponds to the layer’s boundary
receiving the incident irradiance I0. Depth h indicates the
other substrate layer’s boundary. We consider at an arbitrary
depth x a sublayer of infinitesimal thickness dx (figure 1). It
receives the downward irradiance it(x) on one side and the
upward irradiance ir(x + dx) on the other side. In the sublayer,
at position x , a fraction Sdx from both irradiances ir(x) and
it(x) is backscattered, leading to an exchange of light, and a
fraction K dx is absorbed.

While crossing the sublayer, the upward irradiance
ir(x + dx) loses both the absorbed irradiance K ir(x) dx
and the backscattered irradiance Sir(x) dx and gains the
backscattered irradiance Sit(x) dx . The irradiance ir(x)

leaving the sublayer is therefore

ir (x) = ir (x + dx) − (K + S) ir (x) dx + Sit (x) dx . (1)

Likewise, the downward irradiance it(x) loses the
absorbed irradiance K it(x) dx and the backscattered irradiance

it(h)

I0

ir(x  dx)

ir(0)

it(0)

ir(x)it(x+dx)

it(x)
x

h

0

Figure 1. Upward and downward irradiances crossing an
infinitesimal sublayer in the diffusing layer.

Sit(x) dx and gains the backscattered irradiance Sir(x) dx . The
irradiance it(x + dx) leaving the sublayer is

it (x + dx) = it (x) − (K + S) it (x) dx + Sir (x) dx . (2)

The Kubelka–Munk differential equation system [1, 2] is
obtained by giving equations (1) and (2) another form:

d

dx
ir (x) = (K + S) ir (x) − Sit (x)

d

dx
it (x) = Sir (x) − (K + S) it (x) .

(3)

The solutions ir(x) and it(x) of (3) can be easily
determined using the Laplace transform [9]. Another
solving method, introduced by Emmel [10], uses a matrix
representation d

dx V = �V for (3) and a matrix exponential
for expressing V = exp(x�) · V0. The reflectance r(h) of the
layer with thickness h, corresponding to the ratio ir(0)/I0 of
incident light emerging at depth 0, is [2]

r (h) = sinh (bSh)

b cosh (bSh) + a sinh (bSh)
(4)

with

a = K + S

S
and b =

√
a2 − 1. (5)

The transmittance of the layer with thickness h,
corresponding to the ratio it(h)/I0 of incident light emerging
at depth h, is [2]

t (h) = b

b cosh (bSh) + a sinh (bSh)
. (6)

3. Kubelka’s layering model

When various layers with identical refractive indices are
superposed, their global reflectance and transmittance can
be computed according to Kubelka’s layering model [3] and
expressed as functions of the individual layer reflectances
and transmittances. Let us consider a ‘bilayer’, formed by
two layers with upper reflectance R1 for the top layer, resp.
R2 for the bottom layer, with lower reflectance R′

1, resp.
R′

2, with upper transmittance T1, resp. T2, and with lower
transmittance T ′

1 , resp. T ′
2 . Figure 2 shows the multiple

reflection–transmission process of light within the bilayer for a
top illumination.
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Figure 2. Multiple reflection–transmission of light within two
superposed nonsymmetrical layers.

Summing the different fractions of light emerging at
the upper side, we obtain a geometric series expressing the
bilayer’s global reflectance:

R = R1 + T1 R2T ′
1 + T1 R2 R′

1 R2T ′
1 + T1 R2

(
R′

1 R2
)2

T ′
1 + · · · ,

whose sum is

R = R1 + T1T ′
1 R2

1

1 − R′
1 R2

. (7)

The fractions of light emerging at the lower side also
form a geometric series, expressing the bilayer’s global
transmittance:

T = T1T2 + T1 R2 R′
1T2 + T1

(
R2 R′

1

)2
T2 + · · ·

which can be given the form

T = T1T2
1

1 − R′
1 R2

. (8)

Each layer may be represented by a 3 × 3 matrix, called
the layering matrix, whose top-left entry is 1 and where the
upper and lower reflectances and transmittances are arranged
as follows:

Mk =
( 1 −R′

k 0
Rk Ak 0
0 0 Tk

)

(9)

with Ak = Tk T ′
k − Rk R′

k . A superposition of layers is
represented by the multiplication of their layering matrices. In
order to have its top-left entry equal to 1, the product matrix
is divided by its own top-left entry. This ‘normalization’
operation is written with a double underlining:

M = 1

m11
M. (10)

Let us consider the bilayer presented in figure 2. Its
layering matrix M is the normalized product of the layering
matrices M1 and M2:

M = M1M2 = M1M2

1 − R′
1 R2

, (11)

using notations as in (9).
Note that the layering matrix corresponding to the upper

layer is placed at the left.

One may verify that the entries of M are consistent with
Kubelka’s formulae: the upper reflectance, resp. transmittance,
corresponding to the entry m21 of M, resp. the entry m33, is
expressed as (7), resp. as (8). Relation (11) can be generalized
to the superposition of N layers, i.e.,

M = M1M2M3 . . . MN . (12)

4. Combination of the continuous and the
discrete models

In the special case where two layers of a same diffusing
medium are superposed, both the Kubelka–Munk model and
Kubelka’s model apply. Since the layers are homogeneous,
their upper and lower reflectances, as well as their upper
and lower transmittances, are equal. Let us denote h1 and
h2 as the thicknesses of the upper layer and the lower layer
respectively. Their reflectances according to the Kubelka–
Munk model, respectively r(h1) and r(h2), are given by (4) and
their transmittances, respectively t (h1) and t (h2), are given
by (6). The superposed layers form a homogeneous layer
with thickness h1 + h2, whose reflectance r(h1 + h2) is again
given by equation (4). We may verify that the same reflectance
expression is obtained using Kubelka’s reflectance formula (7),
i.e.

r (h1 + h2) = r (h1) + t (h1)
2 r (h2)

1 − r (h1) r (h2)
. (13)

Likewise, the transmittance t (h1 + h2), given by (6), can
be equivalently obtained by combining the layers’ reflectance
and transmittance according to Kubelka’s transmittance
formula (8).

According to the matrix formalism introduced in section 3,
we have

M (h1 + h2) = M (h1) M (h2) (14)

where M(h1 + h2), M(h1) and M(h2) represent the layering
matrices of the bilayer, the upper layer and the lower layer
respectively, with entries expressed according to the Kubelka–
Munk model.

Equation (14) is also valid for a subdivision of a layer.
Let us consider a homogeneous layer with thickness h whose
Kubelka–Munk reflectance r(h) and transmittance t (h) are
given respectively by equation (4) and equation (6). Its
layering matrix is

M (h) =
( 1 −r (h) 0

r (h) A (h) 0
0 0 t (h)

)

(15)

with A(h) = t2(h) − r 2(h). The layer is subdivided into
n identical sublayers with thickness h/n. Their reflectance
r(h/n), transmittance t (h/n) and layering matrix M(h/n)

are given respectively by equations (4), (6) and (15) with h
replaced by h/n. According to relations (12) and (14), we have

M (h) = M (h/n)n. (16)
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5. Infinitesimally thin sublayers

As in equation (16) n may be arbitrary large, we have

M (h) = lim
n→∞ M (h/n)n . (17)

The sublayer becomes infinitesimally thin. According
to the Kubelka–Munk model, the reflectance of such an
infinitesimal sublayer is proportional to its thickness, where
the scattering coefficient S of the diffusing medium is the
coefficient of proportionality. Hence, the Kubelka–Munk
reflectance function r(x) tends to Sx as x tends to 0. This
is shown by the Taylor expansion of (4):

sinh (bSx)

a sinh (bSx) + b cosh (bSx)
= Sx + O

(
x2
)

(18)

where O(x2) means ‘terms of degree 2 or more’. Likewise,
the transmittance of the sublayer is the fraction of light that is
neither backscattered nor absorbed, i.e., 1 − Sdx − K dx . The
Kubelka–Munk transmittance function t (x) tends to 1 − Sx −
K x as x tends to 0, which is shown by the Taylor expansion
of (6):

b

b cosh (bSx) + a sinh (bSx)
= 1 − aSx + O

(
x2
)

= 1 − (K + S) x + O
(
x2
)
. (19)

Therefore, the reflectance of the sublayer with infinitesi-
mal thickness h/n becomes

r (h/n) = S
h

n
, (20)

its transmittance becomes

t (h/n) = 1 − aS
h

n
= 1 − (K + S)

h

n
, (21)

and its layering matrix becomes

M (h/n) =
( 1 −Sh/n 0

Sh/n A (h/n) 0
0 0 1 − aSh/n

)

(22)

with
A (h/n) = 1 − 2aSh/n − (bSh/n)2 . (23)

6. Kubelka–Munk expressions obtained from the
discrete model

Let us now verify that the layering matrix M(h/n) of
infinitesimal sublayers expressed by (22) still satisfies
equation (17). By showing this, we also show that continuous
Kubelka–Munk expressions of reflectance and transmittance
for a thick layer can be obtained from the reflectance and
the transmittance of infinitesimally thin layers according to
Kubelka’s discrete model.

Equation (22) can be reformulated in the following way:

M (h/n) = I3 + 1

n
A (24)

with I3 the 3 × 3 identity matrix and

A =
( 0 −Sh 0

Sh −2aSh + ε 0
0 0 −aSh

)

. (25)

From a physical point of view, the term ε = b2S2h2/n
in equation (25) corresponds to the second-order scattering
within the sublayer, i.e., the portion of light that is scattered
twice before being reflected, transmitted or absorbed. This
term tends to 0 as n tends to infinity. Thus, at an infinitesimal
scale, only the first-order scattering is relevant, which means
that at most one scattering event takes place in average within
the sublayer. Moreover, the reflectance of the infinitesimal
sublayer being proportional to its thickness according to
equation (20), we may conclude that the medium is almost non-
scattering at the scale at which the Kubelka–Munk differential
equations system describes scattering and absorption. This is
not in contradiction with the fact that the medium is strongly
scattering, because at the macroscopic scale a high number of
scattering events occur.

According to a classical limit of the (numerical) exponent
function that can be extended to the matrix exponential [11],

lim
n→∞ M (h/n)n = lim

n→∞

(
I3 + 1

n
A
)n

= exp (A) . (26)

The diagonalization of matrix exp(A) is obtained through
the diagonalization of A [11]:

exp (A) = E−1 · � · E (27)

with

E =
( a − b 1 0

a + b 1 0
0 0 1

)

(28)

and

� = diag
(
e−(a+b)Sh, e−(a−b)Sh, e−aSh

)
. (29)

According to (26), we have

lim
n→∞ M (h/n)n = e−aSh

b

( bc + as −s 0
s bc − as 0
0 0 b

)

(30)

with c = cosh(bSh) and s = sinh(bSh). This matrix, divided
by its top-left entry, corresponds to the layering matrix of the
superposed sublayers:

lim
n→∞ M (h/n)n =

⎛

⎝
1 − s

bc+as 0
s

bc+as
bc−as
bc+as 0

0 0 b
bc+as

⎞

⎠ . (31)

As desired, we retrieve the layering matrix M(h) given by
equation (15), particularly the Kubelka–Munk expression (4)
for the reflectance (entry m21 and negative of entry m12) and (6)
for the transmittance (entry m33).
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7. Kubelka–Munk reflectance expressed as a
continued fraction

A layer with thickness h is decomposed into n sublayers, for
which the reflectance formula (7) is used instead of the matrix
formalism of the previous section. Let rk be the reflectance of
k superposed sublayers. According to equation (7), we have
for every k � 1

rk+1 = r (h/n) + t2 (h/n)

−r (h/n) + 1
rk

(32)

with functions r and t given by (4) and (6) respectively, and
r1 = r(h/n). Using n − 1 times recursion (32), we obtain a
continued fraction expressing the reflectance rn = r(h) of the
whole layer.

It is known [12] that every finite continued fraction

q0 + p1

q1 + p2

q2+
. .. pk

qk

(33)

can be reduced to a simple fraction P/Q, where P and Q are
obtained as the second column entries of the following matrix
product:

(
... P
... Q

)
=
(

1 q0

0 1

)(
0 p1

1 q1

)(
0 p2

1 q2

)
. . .

(
0 pk

1 qk

)
.

(34)
In the case of equation (32), a 2-period appears for

coefficients pk and qk . Thus, equation (32) becomes

Cn = Un (VnWn)
n−1 = UnVn (WnVn)

n−2 Wn (35)

where Un , Vn and Wn designate respectively the matrices

(
1 r (h/n)

0 1

)
,

(
0 t (h/n)2

1 −r (h/n)

)
,

(
0 1
1 r (h/n)

)
.

(36)

As n tends to infinity, r(h/n) and t (h/n) are reduced to
expressions (20) and (21), and thus tend to 0 and 1 respectively,
with the consequence that both (UnVn) and Wn tend to

J =
(

0 1
1 0

)
. (37)

Hence, using equation (35) and the fact that, for taking the
limit, an n − 2 exponent is the same as an n exponent, matrix
Cn tends to

C∞ = J · lim
n→∞

(
1 −Sh/n

Sh/n A (h/n)

)n

· J (38)

with A(h/n) as in equation (23). The matrix to the power
n is exactly the top-left 2 × 2 block of M(h/n) given by
equation (22). Using for this matrix the same line of reasoning
as in the previous section for matrix M(h/n), the central matrix
in equation (38) is the top-left 2 × 2 block of the matrix

in equation (30). Finally, by straightforward computations,
equation (38) becomes

C∞ = e−aSh

b

(
bc − as s

−s bc + as

)
(39)

with c = cosh(bSh) and s = sinh(bSh). As expected, the
right column of C∞ gives the numerator (upper term) and
the denominator (lower term) of the layer reflectance r(h)

expressed according to the Kubelka–Munk model.

8. Conclusion

A correspondence has been established between the Kubelka–
Munk model (continuous two-flux model) and the Kubelka
layering model (discrete two-flux model), with a mathematical
equivalence achieved in the case of a homogeneous diffusing
layer. The transition from a discrete to a continuous model
relies on a new matrix formalism and the use of a matrix
exponential. The notion of layering matrix characterizes
the reflectance and transmittance of layers, incorporating the
limit case of infinitesimally thin layers. The equations of
Kubelka’s layering model, used to model the reflectance
and the transmittance of a pile of infinitesimally thin layers,
lead naturally to a matrix exponential, like in the work
of Emmel, although the ‘exponentialized’ matrix is slightly
different [10]. The present contribution is a step forward in our
interconnection attempt, initiated in previous works, of various
classical models in the domain of color reproduction [8–10].

From a physical point of view, the use of infinitesimally
thin sublayers for obtaining Kubelka–Munk expressions needs
some comments. Usually, scattering is due to heterogeneities
in the medium, e.g. particles, whose size cannot be assumed
as infinitesimally small. According to the intrinsic properties
of the diffusing medium, a model should be chosen for the
description of the scattering of light by a single particle
(single scattering model, such as Mie’s theory [13]) or by
collections of particles (multiple scattering model). It is
possible to determine first the reflectance and the transmittance
of an elementary sublayer made of this diffusing medium
and, afterwards, use the discrete two-flux model to consider
various superposed sublayers, like in Melamed’s model for
powers [14]. The discrete two-flux model should be used
when the sublayer behaves as a perfect diffuser, with the
assumption that the medium is intensely diffusing and that the
sublayer has a minimal thickness, at least the size of an average
particle. The upward and downward fluxes are evaluated at
discrete depths only, corresponding to multiples of the sublayer
thickness. However, the equivalence that has been established
between the continuous and the discrete models allows one to
associate to the real diffusing medium an ‘imaginary’ medium;
this medium is characterized by a scattering coefficient and
an absorption coefficient such that the Kubelka–Munk model
gives the same values for upward and downward fluxes at
the discrete depths considered in the discrete model. At the
intermediate depths, the value given by the continuous model
corresponds to a mathematical interpolation.
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