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Spectral prediction models for halftone prints generally assume homogeneously thick and sharply edged ink
dots, i.e., bilevel halftones. In real prints, the ink thickness often decreases at the boundaries of the ink dots,
thereby forming continuous-level halftones. The present study aims at verifying to what extent the classical
Clapper—Yule and Yule—Nielsen models are able to predict the reflectance of single-ink continuous-level half-
tone prints. First we model the reflectance of continuous-level halftones by developing variable thickness ex-
tensions of both the Clapper—Yule and the Yule—Nielsen spectral prediction models. We consider continuous
halftones whose thickness profiles are obtained by Gaussian filtering of the bilevel halftone image. Then we
predict the reflectance spectra defined by the continuous-level models by fitting the bilevel models’ effective ink
surface coverages. Since dot blurring tends to increase the absorption of light by the ink, the effective ink sur-
face coverage is larger than the nominal one, i.e., dot blurring induces its own contribution to dot gain. Dot
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blurring can also be accurately modeled by an increased n-value of the classical Yule-Nielsen model.
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1. INTRODUCTION

Printed halftone colors are produced by depositing ink
dots of variable size on paper. Accurate prediction of the
printed halftone reflection spectra is difficult due to the
occurrence of physical phenomena that depend on the
printing process, the inks, and the print substrate. In or-
der to predict the reflection spectrum of halftone prints,
mathematical models have been developed relying on geo-
metrical optics or on empirical formulas. The simplest
model relies on the Murray—Davies equation (1) or on its
version with reflectances instead of densities. A single-ink
halftone is composed of two colorants: the inked paper (re-
flectance R; and fractional area a) and the unprinted pa-
per (reflectance R, and fractional area 1-a). The global
reflectance of the print is given by the sum of the two colo-
rant reflectances weighted by their respective fractional
areas:

R(N)=(1-a)R,(\) +aR;(N). (1)

This model assumes that light does not propagate be-
tween the inked and non-inked areas. However, at middle
and high screen frequencies, this assumption is not valid.
Light is transferred between inked and non-inked areas
due to scattering within the paper bulk and to multiple
reflections between the paper bulk and the print-air in-
terface. The relation between the global print reflectance
and the colorant reflectances becomes nonlinear. Yule and
Nielsen [2] modeled this nonlinearity by introducing a n
factor into the Murray-Davies model. Viggiano [3] ex-
tended the Yule—Nielsen model to spectral predictions,
yielding

RO =[aR}™(\) + (1-a)R," V]". (2)
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The n-value in the exponent depends on the printing
device, the type of paper, and the halftone screen fre-
quency. It is fitted from reflectance spectra measured on
representative printed patches. According to Ruckdeschel
and Hauser [4], the n-value should be contained between
1 and 2, but it is often larger [5] and may even be negative
[6].

Clapper and Yule proposed a different reflectance
model for halftone prints that describes the reflection of
light in terms of attenuation by the ink, reflection by the
paper substrate, and internal reflections at the print—air
interface [7]:

reM[1-a +at(\)]
1-rr,M)[1-a+ at?(\)]’

R()\) = Tin,Tex (3)

where T;, is the attenuation of the incident light due to
the paper—air interface, T, the attenuation of the exiting
light, r; the internal reflectance of the paper—air interface
(8,91, r4(\) the intrinsic paper reflectance, a the ink sur-
face coverage, and ¢(\) the ink transmittance. The intrin-
sic paper reflectance and the ink transmittance are de-
duced from the measured reflectances of the unprinted
paper and of the solid ink print.

Due to lateral light scattering and multiple internal re-
flections, the ink dots appear larger than their physical
size (“optical dot gain”). Moreover, mechanical phenom-
ena occurring while depositing the inks yield irregular dot
shapes, larger than expected and nonuniformly thick
(“mechanical dot gain”) [10-12]. The Yule—Nielsen model
as well as the Clapper—Yule model account for them by
fitting an effective ink surface coverage from reflectance
spectra measured on printed patches. The difference be-
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tween effective and nominal surface coverages is used to
quantify a dot gain [13,14]. This dot gain is mainly a me-
chanical dot gain. However, since the prediction models
do not completely account for the optical dot gain, a small
part of the dot gain may also be due to optical phenom-
ena.

Halftone print reflectance models were refined by fo-
cusing on the different phenomena contributing to dot
gain, especially the diffusing properties of the paper
[15-17] and the penetration of the inks into the paper
[18,19]. Arney and Yamaguchi accounted for the ink thick-
ness variation at the dot edges by introducing in their ex-
tended Murray—Davies model an additional empirically
fitted parameter modifying the ink transmittance as a
function of the dot surface coverage [5]. However, none of
these contributions analyze the specific effect of dot blur-
ring on halftone reflectance.

In the present work, we propose a theoretical study of
halftone prints where the ink dots have a smooth, con-
tinuous thickness profile. We are interested in verifying to
which extent the classical Clapper—Yule and Yule—Nielsen
models are able to accurately predict their reflectance. In
order to discard other phenomena such as the influence of
one ink halftone on a second ink halftone, we consider
only single-ink halftones. The single-ink halftone prints
are simulated by specifying the spatial ink thickness dis-
tribution with a mathematical “halftone function.” The re-
flectance of the variable ink thickness halftone print is
calculated thanks to a spectral continuous-level predic-
tion model. The smooth edge halftones are obtained by
applying a Gaussian filter to the bilevel halftone, yielding
a continuous-level halftone (Section 2). Since the ink
thickness differs at each point, we adapt the notion of
colorant present in the Yule—Nielsen and Clapper—Yule
models by considering infinitesimal surface coverages and
ink transmittances derived from the solid ink transmit-
tance according to the position-dependent ink thickness
(Section 3). With this extended colorant concept, we de-
velop continuous versions of the Clapper—Yule and Yule—
Nielsen models that enable the prediction of blurred half-
tone print reflectances (Section 4). We then verify to what
extent the same reflectances can be predicted by the clas-
sical bilevel Clapper—Yule and Yule—Nielsen models by
fitting effective ink surface coverages. The variation of the
effective ink surface coverage is studied as a function of
the blurring level in Section 5. We draw the conclusions in
Section 6.

2. HALFTONE FUNCTION

A halftone print is obtained by depositing inks according
to precomputed dot screens. The ink dots cover a certain
fractional area a, called the ink surface coverage.
Throughout our study, we assume uniform-intensity half-
tone patches, where the ink dots are all similar, circular,
and located on a periodic grid, i.e., centered on points of
integer coordinates.

The halftone layout is represented by a “halftone func-
tion” F(x,y) specifying the ink thickness at each point
(x,y). This function is the periodic repetition, of period 1,
of a “dot function” f describing the bidimensional ink
thickness profile of a single dot:
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Flay)=2 2 flx=iy -J). )
i
In the case of a bilevel halftone, the ink thickness is ei-
ther 0 or 1. For an ink surface coverage a, the ink dots are
disks of radius ya/w. The corresponding bilevel dot func-
tion f,, represents the disk centered on the origin (0,0):

{1 if 2432 < Jalm
folx,y) = . (5)
0 else

To avoid the case where the dots meet each other, we
restrict our study to dot radii less than 1/2, i.e., to ink
surface coverages less than 7/4=0.78.

We call “continuous-level halftone” a halftone whose
ink thickness varies continuously over the surface. We de-
velop the special case of “blurred halftones,” whose dot
function is obtained by blurring the bilevel dot function f;.
Blurring is performed by convolving f, with the Gaussian
function parameterized by a “blurring coefficient” o

1 x?+y?
W) =— -— . 6
ERERY 9mo? P~ 53 (6)
The blurred dot function is given by
fo'(xyy) = f j fO(usv)ga-(x —Uu,y — v)dudv, (7)

and the blurred halftone function F, is obtained by re-
peating periodically £, according to Eq. (4). Taking advan-
tage of the periodicity of the halftone function, one can re-
duce its definition domain to the unit square, i.e., 0<x
<1 and 0<y=<1. This domain intercepts only the four
dots centered on the vertices (0,0), (0,1), (1,0), and (1,1).
The defining expression for ¥, becomes

Fo'(xyy) =fo'(x’y) +fo'(x - 13.)’) +f(7(x7y - 1) +fo’(x - 1,3’ - 1)
(8)

Although the bilevel halftone dots are disjoint, the
blurred ink dots overlap each other beyond a certain blur-
ring level. Thanks to the sums in Egs. (4) and (8), the
halftone function accounts for this overlap. Blurring
modifies the ink thickness distribution but not the ink
volume, expressed as the integral of the dot function over
the considered surface. Since the Gaussian function g,
satisfies the relation

f f golx,y)dxdy =1, 9)

the ink volume remains constant both within the dot
function f,(x,y) and within the halftone function F,(x,y).
Figure 1 shows examples of blurred halftones for an ink
surface coverage of 0.6 and various blurring coefficients.

3. COLORANTS IN A CONTINUOUS-LEVEL
HALFTONE

A halftone print is composed of small juxtaposed areas of
uniform color, called “colorant areas” or simply “colo-
rants.” A colorant is either a layer of one ink with a given
thickness or a superposition of different inks with given
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p F(x,0)
o =0.05
0 0.5 1x 0 0.5 1x
y
1 y F(x,0)
c=0.1
0 0.5 1x 0 05 1x

(a) (b)
Fig. 1. (a) Blurred halftone function F(x,y) for a surface cover-
age a=0.6 and various blurring coefficients ¢ and (b) the ink
thickness of a single dot along the x axis.

thicknesses. From a given set of inks, one can obtain
many different colorants by varying the thickness of the
inks and/or superposing them.

Let us denote as R;(\) the reflectance of a given printed
colorant. The unprinted paper is also a colorant, whose re-
flectance is denoted as R,(\). From the reflectances R;(\)
and R, (), which can be measured, we can deduce accord-
ing to the selected spectral prediction model a transmit-
tance #(\) representing the attenuation of light due to the
ink layer. The unprinted paper is characterized by a colo-
rant transmittance equal to 1.

A bilevel halftone contains two colorants corresponding
to the paper areas with and without ink. In a continuous-
level halftone, the ink thickness varies continuously over
the print’s surface. There is therefore a different colorant
at each point. We associate with each colorant an infini-
tesimal surface coverage dxdy, as well as a transmittance
T(x,y) depending on the ink thickness specified by the
halftone function F(x,y),

T(x,y) = "), (10)

where ¢ is the ink transmittance in the full coverage
patch. Let us now relate this ink transmittance ¢(\) to the
measured reflectance spectra according to the two classi-
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cal reflectance prediction models: the spectrally extended
Yule—Nielsen model [3] and the Clapper—Yule model [7].

A. Ink Transmittance in the Yule-Nielsen Model

With respect to the spectral Yule—Nielsen model, we as-
sume that the attenuation due to the ink is given by the
ratio of the solid ink print reflectance to the unprinted pa-
per reflectance. Since the reflected light travels a double
path across the ink, the solid ink print reflectance may be
expressed as

R;(\) =R,(Vt2,(\). (11)

When the ink thickness is 7y, the solid ink print reflec-
tance becomes

R0\ |7
R{(\) =R,(VE(N) =Rp(x)[ m} : (12)
P

B. Ink transmittance in the Clapper-Yule model
According to the Clapper—Yule model, light crosses the
ink layer more than twice due to the multiple reflections
between the paper and the print—air interface. The solid
ink print reflectance is expressed as a function of the in-
trinsic paper reflectance r4(\), the ink layer transmit-
tance #(\), and the Fresnel terms T},, T,,, and r; associ-
ated with the print-air interface:

TinTexrg()\)tz()\)
R,(\) =

1- rirg()\)tz()\) ' (13)

T;, is the transmission factor for the incident light cross-
ing the interface, T, is the transmission factor for the
emerging light, and r; is the internal reflectance of the in-
terface for the diffuse light reflected by the paper. These
terms depend on the refractive index of the paper as well
as, regarding T3, and T,,, the orientation of light, i.e., the
measuring geometry. For the classical 45°:0° geometry
and a typical refractive index of paper 1.5, we have T},
=0.95, T,,=0.43, and r;=0.60 [8,9].

When ¢(\)=1, Eq. (13) expresses the unprinted paper
reflectance. From this equation and from the measured
paper reflectance R,(\), one deduces the intrinsic paper
reflectance:

R,0)
r{N) = ——————. (14)
TinTex + riRp()\)
The ink transmittance is deduced from Eq. (13) with
the obtained intrinsic paper reflectance ro(\) and the
measured solid ink print reflectance R;(\):

\/ R,(N)
W=\ T T+ rRANT (15)

4. CONTINUOUS HALFTONE
REFLECTANCE MODELS

The aim of a reflectance prediction model is to predict the
reflectance of halftone prints as a function of the surface
coverage of its colorants. In the case of multi-ink bilevel
halftones, the colorants correspond to the different super-
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positions of inks. A halftone of p inks thus contains 27
colorants. We now consider the case of single-ink continu-
ous halftones where, due to variations in the ink thick-
nesses, a multitude of colorants with infinitesimal surface
coverage is formed. The equations of the Yule—Nielsen
model and of the Clapper—Yule model are extended in or-
der to predict the reflectance of halftones whose variable—
thickness dots are made of such colorants.

A. Continuous Yule-Nielsen Model

The classical Yule—Nielsen equation expresses the reflec-
tance of a print containing N colorants as a function of the
individual reflectances R, of the colorants and their re-
spective surface coverages a;, for a given n-value:

N n
Ryn(\) = {2 akR,%’"(m} . (16)

k=1

In the case of single-ink continuous-level halftones, the
relative ink thickness, given by the halftone function
F(x,y), varies at each point and forms a colorant con-
tinuum whose local reflectance is given by Eq. (12). Since
all the colorants have the infinitesimal surface coverage
dxdy, the sum in Eq. (16) becomes a double integral. We
obtain for each wavelength the following reflectance ex-
pression called the “continuous Yule-Nielsen equation,”
whose n-value is denoted as n,:

1 1 n,
RYN=R{ f f (R/R,»F(W"fdxdy] Can
x=0 v y=0

B. Continuous Clapper-Yule Model
The Clapper—Yule model expresses the reflectance of a
halftone print containing N colorants as

TinTexrg()\) |: 2;:;1 aktk()\)j|2

Rey(N) =
1- rirg(A)Ell akt,%()\)

; (18)

where t;(\) and a;, denote, respectively, the transmittance
and the surface coverage of colorant £. The terms T}, T,,
and r; have the same meaning as in Eq. (13).

For single-ink continuous-level halftones, the infinitesi-
mal ink surface coverages dxdy yield double integrals in-
stead of discrete sums. The colorant transmittances are
given by Eq. (10), where transmittance #(\) is deduced
from the solid ink patch reflectance according to Eq. (15)
and reflectance r4(\) is deduced from the measured paper
reflectance according to Eq. (14). We obtain for each wave-
length the following reflectance expression, called “con-
tinuous Clapper—Yule equation”:

1 1 2
T, Teirg |: f J e )dxdy:|
x=0 v y=0

Rey= 1 1
1- rirgf f t2Fe dxdy
x=0 v y=0

(19)
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C. Comparison between the Reflectances of Bilevel and
Continuous-Level Halftones

Let us examine the effect of dot blurring on the resulting
halftone reflectance through the example of cyan ink
printed at 50% surface coverage. The measured spectra of
the paper and of the solid ink patch used for the simula-
tion are plotted in Figure 2. The reflectance R(\) of the
bilevel halftone is calculated with the classical Clapper—
Yule model according to Eq. (3). The blurred print reflec-
tance R,(\) is calculated by the continuous Clapper—Yule
equation according to Eq. (19) with a blurring coefficient
0=0.1 and the halftone function F(x,y) obtained from
Egs. (6)—(8). The simulation shows that the blurred half-
tone print reflects less light than the bilevel one in the
wavelength domain where the ink is absorbing. The
CIELAB AEy, color difference between these two reflec-
tance spectra is 1.50, therefore well perceptible by a hu-
man observer [20]. The continuous Yule—Nielsen model
predicts a similar decrease of the reflectance. Since dot
blurring tends to increase the absorption of light by the
ink, it induces an additional dot gain.

5. DOT GAIN ANALYSIS

For a single printed ink, the classical Clapper—Yule and
Yule—Nielsen models assume bilevel halftones, composed
of two colorants. Their nominal surface coverages are as-
sumed to be known, e.g., from the color separation stage.
However, mechanical interactions between the ink and
the paper modify the ink surface coverages and/or the ink
thickness profile. In order to obtain accurate spectral re-
flectance predictions, effective surface coverages need to
be known. With a given spectral prediction model, they
can be fitted from measured reflectances of a few calibra-
tion patches, e.g., halftones printed at 0.25, 0.5, and 0.75
nominal surface coverages, by minimizing a distance met-
ric between predicted and measured reflection spectra.

In order to analyze the dot gain induced by dot blur-
ring, we simulate a blurred calibration patch of nominal
surface coverage a and blurring coefficient . The con-
tinuous model calculates its reflectance M(\). The classi-
cal model predicts a reflectance P,(\) for an ink surface
coverage x. The x value for which P,(\) is the closest to
M(\) corresponds to the effective surface coverage of the
calibration patch, denoted as a’. It is obtained by mini-
mizing the sum of square differences between M(\) and
P.(\):

730
a' =argmin », [P,(\) - MO\ (20)
x A=380

From several calibration patches printed with different
nominal surface coverages, we obtain first a list of effec-
tive surface coverages a’and then by linear interpolation
a continuous curve a’'=f(a). The gain in ink surface cov-
erage is given by the difference between the effective and
the nominal surface coverages, i.e., a’-a=f(a)—a. This
last function defines the “dot gain curve.”

A. Dot Gain Analysis with the Clapper-Yule Model
Let us come back to the example of cyan halftone prints,
using the same reflectance spectra for the paper and the
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Fig. 2. Reflectances of the paper, R,, of the solid cyan ink print,
R;, of a 50% bilevel halftone, R, and of the blurred halftone ob-
tained with 0=0.1, R,. R, and R; are measured. R and R, are
predicted by the classical and the continuous Clapper—Yule
model, respectively..

solid cyan ink patch as in Fig. 2. The reflectance spectra
M(N\) of blurred halftone prints form the ground truth and
are calculated by the continuous Clapper—Yule model for
the blurring coefficients ¢=0.01, 0.05, 0.1, 0.15, and 0.2
and for the ink surface coverages @=0.05,0.1,0.15,
...,0.75. For each combination of blurring coefficient and
ink surface coverage, an effective ink surface coverage a’
is fitted according to Eq. (20) with the reflectance P, given
by the classical Clapper—Yule equation (3):

730
, . TinTex
a =argmin E
x =380

ML =x+xt(N)]T? 2
-MO)

Tg
1-rirs(M[1-x +xt2(N)]

(21)

For each blurring coefficient, the obtained list of effec-
tive ink surface coverages yields a dot gain curve, plotted
in Fig. 3. Since the halftone function is defined for ink
surface coverages less than 0.78, the curves are extrapo-
lated beyond a=0.75 by assuming that no dot gain occurs
for solid ink.

As already noticed when analyzing Fig. 2, blurring in-
creases the dot gain. It is interesting to observe that the

0.06

0.05

0.04

0.03

0.02

0.01

0 0.25 0.5 0.75 1 a

Fig. 3. Dot gain curves predicted by the Clapper—Yule model for
various blurring coefficients.
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ink surface coverage yielding the highest dot gain de-
creases as blurring increases. The AEy, values mentioned
in the figure designate the CIELAB color difference be-
tween the reflectance M(\) calculated by the continuous
model and the reflectance P,,(\) predicted by the classical
model at the fitted surface coverage a’. Only the largest
color difference is mentioned, which coincides with the
largest dot gain. The color difference becomes important
for the highest blurring coefficients, e.g., 0>0.1. This
means that the classical Clapper—Yule model has difficul-
ties reproducing the spectrum defined by the continuous
model, even with optimal effective ink surface coverages.

B. Dot Gain Analysis with the Yule-Nielsen Model

Let us now study the influence of dot blurring according
to the Yule—Nielsen model. The reflectances M(\) of the
different calibration patches form the ground truth and
are calculated by the continuous Yule—Nielsen equation
(17) with n,=3.5. This typical n-value was inspired by
previous work carried out with inkjet prints [13]. Then we
use the bilevel Yule-Nielsen equation (2) and fit the effec-
tive surface coverages according to the minimization
equation (20). The n-value n; used in the bilevel Yule—
Nielsen equation is the same as the one used in the
continuous-level Yule-Nielsen equation, i.e., ny=n.=3.5:

730
a'=argmin >, {[xR}™(\) +(1-2)R, ()] - MO}
x A=380

(22)

The dot gain curves predicted by the Yule—Nielsen
model are similar to those predicted by the Clapper—Yule
model, even though sensibly lower (Fig. 4). However, the
Yule—Nielsen model has less difficulty than the Clapper—
Yule model in reproducing the reflectance spectrum pre-
dicted by its continuous model. The largest color differ-
ences mentioned in Fig. 4 are lower than their equivalent
ones in Fig. 3. Moreover, they are all inferior to 1, i.e.,
lower than the threshold of perception by human vision.

Lower dot gain curves are obtained when n; is in-
creased (see Appendix A). In order to find the optimal n,

a —a
0.06
0.05
AEy,=0.77
0.04 5=02
0.65
405 0.15
0.48
0.1
0.02
0.05 2y
0.01
0.01 Q05
0 0.25 0.5 0.75 1°a

Fig. 4. Dot gain curves predicted by the Yule-Nielsen model for
various blurring coefficients and for n,=n.=3.5.
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and the optimal effective ink surface coverages yielding
reflection spectra closest to the ones defined by the con-
tinuous model, we fit all the parameters simultaneously
by a single minimization equation. The fitted n, increases
exponentially as the blurring coefficient increases, while
the obtained dot gain curves are very close to zero. We ob-
tain closely identical results by setting the dot gain curves
to zero, i.e., by taking effective ink surface coverages
equal to the nominal ones, and by fitting only the n,-value
(see Fig. 5). The fit of n; relies on three reflectances M,
simulated by the continuous Yule-Nielsen model with n,
=3.5, corresponding to the three ink surface coverages
a;,={0.25,0.5,0.75}:

730
ny = arg min E |: 2 {lapRY“(\) + (1 - ak)Rll,/”()\)]”

k A=380

- Mk(K)}2] : (23)

For all the considered blurring coefficients and surface
coverages, the reflectance spectrum predicted by the bi-
level Yule—Nielsen model with fitted n; is extremely close
to the one simulated by the continuous model. The AEy,
color differences are close to zero. An increase of n; with-
out modification of the ink surface coverage is therefore
sufficient to perfectly model the effects of halftone dot
blurring. According to this study, it seems preferable to
predict the reflectance of blurred halftone prints with the
Yule—Nielsen model rather than with the Clapper—Yule
model.

Note that the experiments presented in this section
were also carried out by selecting other values for the
n.-value used in the continuous Yule-Nielsen model when
simulating the reflectance of the blurred halftone prints.
The surface coverages fitted according to Eq. (22) and the
np-value fitted according to Eq. (23) vary in a similar
manner, as presented in Figs. 3 and 4. We also verified
that the same results are obtained when using a magenta
or yellow ink transmittance spectrum instead of a cyan
ink transmittance spectrum.

n

AEg,=0.01

25

20

15

0 0.05 0.1 0.15 02 o
Fig. 5. Influence of the blurring coefficient on the n-factor fitted
from three blurred halftone patches with ink surface coverages
0.25, 0.5, and 0.75 by considering the effective surface coverages
equal to the nominal ones.
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6. CONCLUSIONS

Two main contributions have been introduced. The first
one is the extension of the Clapper—Yule and Yule—
Nielsen spectral reflectance prediction models to single-
ink continuous halftones, i.e., halftones with a continuous
ink thickness profile. The extended models rely on a mul-
titude of colorants whose transmittance depends on the
ink thickness specified by a halftone function. Since the
colorants are different at each point, their surface cover-
ages are infinitesimal. Therefore, the sums in the
Clapper—Yule and Yule-Nielsen equations become inte-
grals. The second contribution is the use of the extended
Clapper—Yule and Yule—Nielsen models to study the in-
fluence of ink dot blurring on the reflectance of halftone
prints. Since it is not possible to ask a given printing de-
vice to produce different blurring levels, the extended
models helped in simulating blurred halftone print reflec-
tances. We could verify to what extent the classical
Clapper—Yule and Yule—Nielsen models are able to predict
the reflectance of blurred halftone prints by fitting effec-
tive surface coverages. The first observation is the fact
that the fitted surface coverages increase with the blur-
ring level. Therefore, dot blurring induces its own contri-
bution to dot gain. With the fitted effective ink surface
coverages, the classical Clapper—Yule model provides sat-
isfying predictions despite a small loss of prediction accu-
racy when blurring becomes important. The predictions
provided by the classical Yule—Nielsen model are more ac-
curate, especially when fitting the Yule—Nielsen n-value
instead of the ink surface coverages. The n-value in-
creases with the dot blurring level and accounts perfectly
for the dot blurring effect. This justifies the choice of a
high n-value for prints having a blurred dot profile.

APPENDIX A: INFLUENCE OF THE
YULE-NIELSEN N-VALUE ON DOT GAIN
CURVES

For a given blurred halftone print, the reflectance calcu-
lated by the continuous Yule—Nielsen model is accurately
predicted with the classical bilevel Yule—Nielsen model by
fitting an effective ink surface coverage. When the two
models use the same n-value, the fitted ink surface cover-
age is larger than the nominal one, i.e., the dot gain is
positive (see Fig. 4). When the n;-value of the classical
Yule—Nielsen model is increased, lower effective ink sur-
face coverages are obtained. Therefore, increasing the
ny-value reduces the computed dot gain. This is illus-
trated in Figs. 6 and 7 where the dot gain is computed
from reflectances simulated with a blurring coefficient of
0.1 and with the same n-value n,=3.5 as in Section 5. The
simulations rely on the same paper and same ink as in
Figs. 2 and 4. Beyond a certain n,-value, the dot gain be-
comes negative. The CIELAB AEy, color differences
shown in italic in Fig. 7 indicate the color difference be-
tween the reflection spectra calculated by the continuous
model and predicted by the bilevel model with various
ny-values. We observe that the matching is better when
the dot gain becomes minimal (in absolute terms). There-
fore, there exists an optimal n; for which the bilevel Yule—
Nielsen model yields spectral predictions nearly equiva-
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Fig. 6. Dot gain curves calculated using the bilevel Yule—

Nielsen model with various nj-values, from print reflectances
simulated by the continuous-level Yule-Nielsen model with n,
=3.5 for a blurring coefficient o=0.1.

lent to the ones given by the continuous Yule—Nielsen
model. Since this optimal n; corresponds to the lowest dot
gain, its variation as a function of the blurring coefficient
is substantially the same as in Fig. 5, where a dot gain of
zero was assumed. For a blurring coefficient ¢=0.1, the
optimal value n,="7.5 can be read on both Figs. 5 and 7.
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