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Analyzing halftone dot blurring by extended
spectral prediction models
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Spectral prediction models for halftone prints generally assume homogeneously thick and sharply edged ink
dots, i.e., bilevel halftones. In real prints, the ink thickness often decreases at the boundaries of the ink dots,
thereby forming continuous-level halftones. The present study aims at verifying to what extent the classical
Clapper–Yule and Yule–Nielsen models are able to predict the reflectance of single-ink continuous-level half-
tone prints. First we model the reflectance of continuous-level halftones by developing variable thickness ex-
tensions of both the Clapper–Yule and the Yule–Nielsen spectral prediction models. We consider continuous
halftones whose thickness profiles are obtained by Gaussian filtering of the bilevel halftone image. Then we
predict the reflectance spectra defined by the continuous-level models by fitting the bilevel models’ effective ink
surface coverages. Since dot blurring tends to increase the absorption of light by the ink, the effective ink sur-
face coverage is larger than the nominal one, i.e., dot blurring induces its own contribution to dot gain. Dot
blurring can also be accurately modeled by an increased n-value of the classical Yule–Nielsen model.
© 2009 Optical Society of America
OCIS codes: 100.2810, 330.1710.
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. INTRODUCTION
rinted halftone colors are produced by depositing ink
ots of variable size on paper. Accurate prediction of the
rinted halftone reflection spectra is difficult due to the
ccurrence of physical phenomena that depend on the
rinting process, the inks, and the print substrate. In or-
er to predict the reflection spectrum of halftone prints,
athematical models have been developed relying on geo-
etrical optics or on empirical formulas. The simplest
odel relies on the Murray–Davies equation (1) or on its

ersion with reflectances instead of densities. A single-ink
alftone is composed of two colorants: the inked paper (re-
ectance Ri and fractional area a) and the unprinted pa-
er (reflectance Rp and fractional area 1−a). The global
eflectance of the print is given by the sum of the two colo-
ant reflectances weighted by their respective fractional
reas:

R��� = �1 − a�Rp��� + aRi���. �1�

This model assumes that light does not propagate be-
ween the inked and non-inked areas. However, at middle
nd high screen frequencies, this assumption is not valid.
ight is transferred between inked and non-inked areas
ue to scattering within the paper bulk and to multiple
eflections between the paper bulk and the print–air in-
erface. The relation between the global print reflectance
nd the colorant reflectances becomes nonlinear. Yule and
ielsen [2] modeled this nonlinearity by introducing a n

actor into the Murray–Davies model. Viggiano [3] ex-
ended the Yule–Nielsen model to spectral predictions,
ielding

R��� = �aRi
1/n��� + �1 − a�Rp

1/n����n. �2�
1084-7529/10/010006-7/$15.00 © 2
The n-value in the exponent depends on the printing
evice, the type of paper, and the halftone screen fre-
uency. It is fitted from reflectance spectra measured on
epresentative printed patches. According to Ruckdeschel
nd Hauser [4], the n-value should be contained between
and 2, but it is often larger [5] and may even be negative

6].
Clapper and Yule proposed a different reflectance
odel for halftone prints that describes the reflection of

ight in terms of attenuation by the ink, reflection by the
aper substrate, and internal reflections at the print–air
nterface [7]:

R��� = TinTex

rg����1 − a + at����2

1 − rirg����1 − a + at2����
, �3�

here Tin is the attenuation of the incident light due to
he paper–air interface, Tex the attenuation of the exiting
ight, ri the internal reflectance of the paper–air interface
8,9], rg��� the intrinsic paper reflectance, a the ink sur-
ace coverage, and t��� the ink transmittance. The intrin-
ic paper reflectance and the ink transmittance are de-
uced from the measured reflectances of the unprinted
aper and of the solid ink print.
Due to lateral light scattering and multiple internal re-

ections, the ink dots appear larger than their physical
ize (“optical dot gain”). Moreover, mechanical phenom-
na occurring while depositing the inks yield irregular dot
hapes, larger than expected and nonuniformly thick
“mechanical dot gain”) [10–12]. The Yule–Nielsen model
s well as the Clapper–Yule model account for them by
tting an effective ink surface coverage from reflectance
pectra measured on printed patches. The difference be-
010 Optical Society of America
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ween effective and nominal surface coverages is used to
uantify a dot gain [13,14]. This dot gain is mainly a me-
hanical dot gain. However, since the prediction models
o not completely account for the optical dot gain, a small
art of the dot gain may also be due to optical phenom-
na.

Halftone print reflectance models were refined by fo-
using on the different phenomena contributing to dot
ain, especially the diffusing properties of the paper
15–17] and the penetration of the inks into the paper
18,19]. Arney and Yamaguchi accounted for the ink thick-
ess variation at the dot edges by introducing in their ex-
ended Murray–Davies model an additional empirically
tted parameter modifying the ink transmittance as a
unction of the dot surface coverage [5]. However, none of
hese contributions analyze the specific effect of dot blur-
ing on halftone reflectance.

In the present work, we propose a theoretical study of
alftone prints where the ink dots have a smooth, con-
inuous thickness profile. We are interested in verifying to
hich extent the classical Clapper–Yule and Yule–Nielsen
odels are able to accurately predict their reflectance. In

rder to discard other phenomena such as the influence of
ne ink halftone on a second ink halftone, we consider
nly single-ink halftones. The single-ink halftone prints
re simulated by specifying the spatial ink thickness dis-
ribution with a mathematical “halftone function.” The re-
ectance of the variable ink thickness halftone print is
alculated thanks to a spectral continuous-level predic-
ion model. The smooth edge halftones are obtained by
pplying a Gaussian filter to the bilevel halftone, yielding

continuous-level halftone (Section 2). Since the ink
hickness differs at each point, we adapt the notion of
olorant present in the Yule–Nielsen and Clapper–Yule
odels by considering infinitesimal surface coverages and

nk transmittances derived from the solid ink transmit-
ance according to the position-dependent ink thickness
Section 3). With this extended colorant concept, we de-
elop continuous versions of the Clapper–Yule and Yule–
ielsen models that enable the prediction of blurred half-

one print reflectances (Section 4). We then verify to what
xtent the same reflectances can be predicted by the clas-
ical bilevel Clapper–Yule and Yule–Nielsen models by
tting effective ink surface coverages. The variation of the
ffective ink surface coverage is studied as a function of
he blurring level in Section 5. We draw the conclusions in
ection 6.

. HALFTONE FUNCTION
halftone print is obtained by depositing inks according

o precomputed dot screens. The ink dots cover a certain
ractional area a, called the ink surface coverage.
hroughout our study, we assume uniform-intensity half-
one patches, where the ink dots are all similar, circular,
nd located on a periodic grid, i.e., centered on points of
nteger coordinates.

The halftone layout is represented by a “halftone func-
ion” F�x ,y� specifying the ink thickness at each point
x ,y�. This function is the periodic repetition, of period 1,
f a “dot function” f describing the bidimensional ink
hickness profile of a single dot:
F�x,y� = �
i

�
j

f�x − i,y − j�. �4�

In the case of a bilevel halftone, the ink thickness is ei-
her 0 or 1. For an ink surface coverage a, the ink dots are
isks of radius �a /�. The corresponding bilevel dot func-
ion f0 represents the disk centered on the origin (0,0):

f0�x,y� = �1 if �x2 + y2 � �a/�

0 else � . �5�

To avoid the case where the dots meet each other, we
estrict our study to dot radii less than 1/2, i.e., to ink
urface coverages less than � /4�0.78.

We call “continuous-level halftone” a halftone whose
nk thickness varies continuously over the surface. We de-
elop the special case of “blurred halftones,” whose dot
unction is obtained by blurring the bilevel dot function f0.
lurring is performed by convolving f0 with the Gaussian

unction parameterized by a “blurring coefficient” �:

g��x,y� =
1

2��2 exp	−
x2 + y2

2�2 
. �6�

The blurred dot function is given by

f��x,y� =�
−�

� �
−�

�

f0�u,v�g��x − u,y − v�dudv, �7�

nd the blurred halftone function F� is obtained by re-
eating periodically f� according to Eq. (4). Taking advan-
age of the periodicity of the halftone function, one can re-
uce its definition domain to the unit square, i.e., 0�x
1 and 0�y�1. This domain intercepts only the four

ots centered on the vertices (0,0), (0,1), (1,0), and (1,1).
he defining expression for F� becomes

F��x,y� = f��x,y� + f��x − 1,y� + f��x,y − 1� + f��x − 1,y − 1�.

�8�

Although the bilevel halftone dots are disjoint, the
lurred ink dots overlap each other beyond a certain blur-
ing level. Thanks to the sums in Eqs. (4) and (8), the
alftone function accounts for this overlap. Blurring
odifies the ink thickness distribution but not the ink

olume, expressed as the integral of the dot function over
he considered surface. Since the Gaussian function g�

atisfies the relation

�
−�

� �
−�

�

g��x,y�dxdy = 1, �9�

he ink volume remains constant both within the dot
unction f��x ,y� and within the halftone function F��x ,y�.
igure 1 shows examples of blurred halftones for an ink
urface coverage of 0.6 and various blurring coefficients.

. COLORANTS IN A CONTINUOUS-LEVEL
ALFTONE
halftone print is composed of small juxtaposed areas of

niform color, called “colorant areas” or simply “colo-
ants.” A colorant is either a layer of one ink with a given
hickness or a superposition of different inks with given
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hicknesses. From a given set of inks, one can obtain
any different colorants by varying the thickness of the

nks and/or superposing them.
Let us denote as Ri��� the reflectance of a given printed

olorant. The unprinted paper is also a colorant, whose re-
ectance is denoted as Rp���. From the reflectances Ri���
nd Rp���, which can be measured, we can deduce accord-
ng to the selected spectral prediction model a transmit-
ance t��� representing the attenuation of light due to the
nk layer. The unprinted paper is characterized by a colo-
ant transmittance equal to 1.

A bilevel halftone contains two colorants corresponding
o the paper areas with and without ink. In a continuous-
evel halftone, the ink thickness varies continuously over
he print’s surface. There is therefore a different colorant
t each point. We associate with each colorant an infini-
esimal surface coverage dxdy, as well as a transmittance
�x ,y� depending on the ink thickness specified by the
alftone function F�x ,y�,

T�x,y� = tF�x,y�, �10�

here t is the ink transmittance in the full coverage
atch. Let us now relate this ink transmittance t��� to the
easured reflectance spectra according to the two classi-

ig. 1. (a) Blurred halftone function F�x ,y� for a surface cover-
ge a=0.6 and various blurring coefficients � and (b) the ink
hickness of a single dot along the x axis.
al reflectance prediction models: the spectrally extended
ule–Nielsen model [3] and the Clapper–Yule model [7].

. Ink Transmittance in the Yule–Nielsen Model
ith respect to the spectral Yule–Nielsen model, we as-

ume that the attenuation due to the ink is given by the
atio of the solid ink print reflectance to the unprinted pa-
er reflectance. Since the reflected light travels a double
ath across the ink, the solid ink print reflectance may be
xpressed as

Ri��� = Rp���tyn
2 ���. �11�

When the ink thickness is �, the solid ink print reflec-
ance becomes

Ri
������ = Rp���tyn

2���� = Rp���� Ri���

Rp���
�

. �12�

. Ink transmittance in the Clapper–Yule model
ccording to the Clapper–Yule model, light crosses the

nk layer more than twice due to the multiple reflections
etween the paper and the print–air interface. The solid
nk print reflectance is expressed as a function of the in-
rinsic paper reflectance rg���, the ink layer transmit-
ance t���, and the Fresnel terms Tin, Tex, and ri associ-
ted with the print–air interface:

Ri��� =
TinTexrg���t2���

1 − rirg���t2���
. �13�

in is the transmission factor for the incident light cross-
ng the interface, Tex is the transmission factor for the
merging light, and ri is the internal reflectance of the in-
erface for the diffuse light reflected by the paper. These
erms depend on the refractive index of the paper as well
s, regarding Tin and Tex, the orientation of light, i.e., the
easuring geometry. For the classical 45°:0° geometry

nd a typical refractive index of paper 1.5, we have Tin
0.95, Tex=0.43, and ri=0.60 [8,9].
When t���=1, Eq. (13) expresses the unprinted paper

eflectance. From this equation and from the measured
aper reflectance Rp���, one deduces the intrinsic paper
eflectance:

rg��� =
Rp���

TinTex + riRp���
. �14�

The ink transmittance is deduced from Eq. (13) with
he obtained intrinsic paper reflectance rg��� and the
easured solid ink print reflectance Ri���:

t��� =� Ri���

rg����TinTex + riRi����
. �15�

. CONTINUOUS HALFTONE
EFLECTANCE MODELS
he aim of a reflectance prediction model is to predict the
eflectance of halftone prints as a function of the surface
overage of its colorants. In the case of multi-ink bilevel
alftones, the colorants correspond to the different super-
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ositions of inks. A halftone of p inks thus contains 2p

olorants. We now consider the case of single-ink continu-
us halftones where, due to variations in the ink thick-
esses, a multitude of colorants with infinitesimal surface
overage is formed. The equations of the Yule–Nielsen
odel and of the Clapper–Yule model are extended in or-

er to predict the reflectance of halftones whose variable–
hickness dots are made of such colorants.

. Continuous Yule–Nielsen Model
he classical Yule–Nielsen equation expresses the reflec-
ance of a print containing N colorants as a function of the
ndividual reflectances Rk of the colorants and their re-
pective surface coverages ak for a given n-value:

RYN��� = ��
k=1

N

akRk
1/n���
n

. �16�

In the case of single-ink continuous-level halftones, the
elative ink thickness, given by the halftone function
�x ,y�, varies at each point and forms a colorant con-

inuum whose local reflectance is given by Eq. (12). Since
ll the colorants have the infinitesimal surface coverage
xdy, the sum in Eq. (16) becomes a double integral. We
btain for each wavelength the following reflectance ex-
ression called the “continuous Yule–Nielsen equation,”
hose n-value is denoted as nc:

RYN = Rp��
x=0

1 �
y=0

1

�Ri/Rp�F�x,y�/ncdxdy
nc

. �17�

. Continuous Clapper–Yule Model
he Clapper–Yule model expresses the reflectance of a
alftone print containing N colorants as

RCY��� =
TinTexrg�����k=1

N
aktk���
2

1 − rirg����k=1

N
aktk

2���
, �18�

here tk��� and ak denote, respectively, the transmittance
nd the surface coverage of colorant k. The terms Tin, Tex,
nd ri have the same meaning as in Eq. (13).
For single-ink continuous-level halftones, the infinitesi-
al ink surface coverages dxdy yield double integrals in-

tead of discrete sums. The colorant transmittances are
iven by Eq. (10), where transmittance t��� is deduced
rom the solid ink patch reflectance according to Eq. (15)
nd reflectance rg��� is deduced from the measured paper
eflectance according to Eq. (14). We obtain for each wave-
ength the following reflectance expression, called “con-
inuous Clapper–Yule equation”:

RCY =

TinTexrg��
x=0

1 �
y=0

1

tF�x,y�dxdy
2

1 − rirg�
x=0

1 �
y=0

1

t2F�x,y�dxdy

. �19�
. Comparison between the Reflectances of Bilevel and
ontinuous-Level Halftones
et us examine the effect of dot blurring on the resulting
alftone reflectance through the example of cyan ink
rinted at 50% surface coverage. The measured spectra of
he paper and of the solid ink patch used for the simula-
ion are plotted in Figure 2. The reflectance R��� of the
ilevel halftone is calculated with the classical Clapper–
ule model according to Eq. (3). The blurred print reflec-
ance R���� is calculated by the continuous Clapper–Yule
quation according to Eq. (19) with a blurring coefficient
=0.1 and the halftone function F��x ,y� obtained from
qs. (6)–(8). The simulation shows that the blurred half-

one print reflects less light than the bilevel one in the
avelength domain where the ink is absorbing. The
IELAB �E94 color difference between these two reflec-

ance spectra is 1.50, therefore well perceptible by a hu-
an observer [20]. The continuous Yule–Nielsen model

redicts a similar decrease of the reflectance. Since dot
lurring tends to increase the absorption of light by the
nk, it induces an additional dot gain.

. DOT GAIN ANALYSIS
or a single printed ink, the classical Clapper–Yule and
ule–Nielsen models assume bilevel halftones, composed
f two colorants. Their nominal surface coverages are as-
umed to be known, e.g., from the color separation stage.
owever, mechanical interactions between the ink and

he paper modify the ink surface coverages and/or the ink
hickness profile. In order to obtain accurate spectral re-
ectance predictions, effective surface coverages need to
e known. With a given spectral prediction model, they
an be fitted from measured reflectances of a few calibra-
ion patches, e.g., halftones printed at 0.25, 0.5, and 0.75
ominal surface coverages, by minimizing a distance met-
ic between predicted and measured reflection spectra.

In order to analyze the dot gain induced by dot blur-
ing, we simulate a blurred calibration patch of nominal
urface coverage a and blurring coefficient �. The con-
inuous model calculates its reflectance M���. The classi-
al model predicts a reflectance Px��� for an ink surface
overage x. The x value for which Px��� is the closest to

��� corresponds to the effective surface coverage of the
alibration patch, denoted as a�. It is obtained by mini-
izing the sum of square differences between M��� and

x���:

a� = arg min
x

�
�=380

730

�Px��� − M����2. �20�

From several calibration patches printed with different
ominal surface coverages, we obtain first a list of effec-
ive surface coverages a�and then by linear interpolation
continuous curve a�= f�a�. The gain in ink surface cov-

rage is given by the difference between the effective and
he nominal surface coverages, i.e., a�−a= f�a�−a. This
ast function defines the “dot gain curve.”

. Dot Gain Analysis with the Clapper–Yule Model
et us come back to the example of cyan halftone prints,
sing the same reflectance spectra for the paper and the
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olid cyan ink patch as in Fig. 2. The reflectance spectra
��� of blurred halftone prints form the ground truth and

re calculated by the continuous Clapper–Yule model for
he blurring coefficients �=0.01, 0.05, 0.1, 0.15, and 0.2
nd for the ink surface coverages a=0.05,0.1,0.15,
. . ,0.75. For each combination of blurring coefficient and
nk surface coverage, an effective ink surface coverage a�
s fitted according to Eq. (20) with the reflectance Px given
y the classical Clapper–Yule equation (3):

a� = arg min
x

�
�=380

730 �TinTexrg����1 − x + xt����2

1 − rirg����1 − x + xt2����
− M����2

.

�21�

For each blurring coefficient, the obtained list of effec-
ive ink surface coverages yields a dot gain curve, plotted
n Fig. 3. Since the halftone function is defined for ink
urface coverages less than 0.78, the curves are extrapo-
ated beyond a=0.75 by assuming that no dot gain occurs
or solid ink.

As already noticed when analyzing Fig. 2, blurring in-
reases the dot gain. It is interesting to observe that the

ig. 2. Reflectances of the paper, Rp, of the solid cyan ink print,
i, of a 50% bilevel halftone, R, and of the blurred halftone ob-

ained with �=0.1, R�. Rp and Ri are measured. R and R� are
redicted by the classical and the continuous Clapper–Yule
odel, respectively..

ig. 3. Dot gain curves predicted by the Clapper–Yule model for
arious blurring coefficients.
nk surface coverage yielding the highest dot gain de-
reases as blurring increases. The �E94 values mentioned
n the figure designate the CIELAB color difference be-
ween the reflectance M��� calculated by the continuous
odel and the reflectance Pa�

��� predicted by the classical
odel at the fitted surface coverage a�. Only the largest

olor difference is mentioned, which coincides with the
argest dot gain. The color difference becomes important
or the highest blurring coefficients, e.g., �	0.1. This

eans that the classical Clapper–Yule model has difficul-
ies reproducing the spectrum defined by the continuous
odel, even with optimal effective ink surface coverages.

. Dot Gain Analysis with the Yule–Nielsen Model
et us now study the influence of dot blurring according

o the Yule–Nielsen model. The reflectances M��� of the
ifferent calibration patches form the ground truth and
re calculated by the continuous Yule–Nielsen equation
17) with nc=3.5. This typical n-value was inspired by
revious work carried out with inkjet prints [13]. Then we
se the bilevel Yule–Nielsen equation (2) and fit the effec-
ive surface coverages according to the minimization
quation (20). The n-value nb used in the bilevel Yule–
ielsen equation is the same as the one used in the

ontinuous-level Yule–Nielsen equation, i.e., nb=nc=3.5:

a� = arg min
x

�
�=380

730

��xRi
1/nb��� + �1 − x�Rp

1/nb����nb − M����2.

�22�

The dot gain curves predicted by the Yule–Nielsen
odel are similar to those predicted by the Clapper–Yule
odel, even though sensibly lower (Fig. 4). However, the
ule–Nielsen model has less difficulty than the Clapper–
ule model in reproducing the reflectance spectrum pre-
icted by its continuous model. The largest color differ-
nces mentioned in Fig. 4 are lower than their equivalent
nes in Fig. 3. Moreover, they are all inferior to 1, i.e.,
ower than the threshold of perception by human vision.

Lower dot gain curves are obtained when nb is in-
reased (see Appendix A). In order to find the optimal nb

ig. 4. Dot gain curves predicted by the Yule–Nielsen model for
arious blurring coefficients and for n =n =3.5.
b c
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nd the optimal effective ink surface coverages yielding
eflection spectra closest to the ones defined by the con-
inuous model, we fit all the parameters simultaneously
y a single minimization equation. The fitted nb increases
xponentially as the blurring coefficient increases, while
he obtained dot gain curves are very close to zero. We ob-
ain closely identical results by setting the dot gain curves
o zero, i.e., by taking effective ink surface coverages
qual to the nominal ones, and by fitting only the nb-value
see Fig. 5). The fit of nb relies on three reflectances Mk,
imulated by the continuous Yule–Nielsen model with nc
3.5, corresponding to the three ink surface coverages
k= �0.25,0.5,0.75�:

nb = arg min
u

�
k
� �

�=380

730

��akRi
1/u��� + �1 − ak�Rp

1/u����u

− Mk����2
. �23�

For all the considered blurring coefficients and surface
overages, the reflectance spectrum predicted by the bi-
evel Yule–Nielsen model with fitted nb is extremely close
o the one simulated by the continuous model. The �E94
olor differences are close to zero. An increase of nb with-
ut modification of the ink surface coverage is therefore
ufficient to perfectly model the effects of halftone dot
lurring. According to this study, it seems preferable to
redict the reflectance of blurred halftone prints with the
ule–Nielsen model rather than with the Clapper–Yule
odel.
Note that the experiments presented in this section

ere also carried out by selecting other values for the
c-value used in the continuous Yule–Nielsen model when
imulating the reflectance of the blurred halftone prints.
he surface coverages fitted according to Eq. (22) and the
b-value fitted according to Eq. (23) vary in a similar
anner, as presented in Figs. 3 and 4. We also verified

hat the same results are obtained when using a magenta
r yellow ink transmittance spectrum instead of a cyan
nk transmittance spectrum.

ig. 5. Influence of the blurring coefficient on the n-factor fitted
rom three blurred halftone patches with ink surface coverages
.25, 0.5, and 0.75 by considering the effective surface coverages
qual to the nominal ones.
. CONCLUSIONS
wo main contributions have been introduced. The first
ne is the extension of the Clapper–Yule and Yule–
ielsen spectral reflectance prediction models to single-

nk continuous halftones, i.e., halftones with a continuous
nk thickness profile. The extended models rely on a mul-
itude of colorants whose transmittance depends on the
nk thickness specified by a halftone function. Since the
olorants are different at each point, their surface cover-
ges are infinitesimal. Therefore, the sums in the
lapper–Yule and Yule–Nielsen equations become inte-
rals. The second contribution is the use of the extended
lapper—Yule and Yule—Nielsen models to study the in-
uence of ink dot blurring on the reflectance of halftone
rints. Since it is not possible to ask a given printing de-
ice to produce different blurring levels, the extended
odels helped in simulating blurred halftone print reflec-

ances. We could verify to what extent the classical
lapper–Yule and Yule–Nielsen models are able to predict

he reflectance of blurred halftone prints by fitting effec-
ive surface coverages. The first observation is the fact
hat the fitted surface coverages increase with the blur-
ing level. Therefore, dot blurring induces its own contri-
ution to dot gain. With the fitted effective ink surface
overages, the classical Clapper–Yule model provides sat-
sfying predictions despite a small loss of prediction accu-
acy when blurring becomes important. The predictions
rovided by the classical Yule–Nielsen model are more ac-
urate, especially when fitting the Yule–Nielsen n-value
nstead of the ink surface coverages. The n-value in-
reases with the dot blurring level and accounts perfectly
or the dot blurring effect. This justifies the choice of a
igh n-value for prints having a blurred dot profile.

PPENDIX A: INFLUENCE OF THE
ULE–NIELSEN N-VALUE ON DOT GAIN
URVES
or a given blurred halftone print, the reflectance calcu-

ated by the continuous Yule–Nielsen model is accurately
redicted with the classical bilevel Yule–Nielsen model by
tting an effective ink surface coverage. When the two
odels use the same n-value, the fitted ink surface cover-

ge is larger than the nominal one, i.e., the dot gain is
ositive (see Fig. 4). When the nb-value of the classical
ule–Nielsen model is increased, lower effective ink sur-

ace coverages are obtained. Therefore, increasing the
b-value reduces the computed dot gain. This is illus-
rated in Figs. 6 and 7 where the dot gain is computed
rom reflectances simulated with a blurring coefficient of
.1 and with the same n-value nc=3.5 as in Section 5. The
imulations rely on the same paper and same ink as in
igs. 2 and 4. Beyond a certain nb-value, the dot gain be-
omes negative. The CIELAB �E94 color differences
hown in italic in Fig. 7 indicate the color difference be-
ween the reflection spectra calculated by the continuous
odel and predicted by the bilevel model with various

b-values. We observe that the matching is better when
he dot gain becomes minimal (in absolute terms). There-
ore, there exists an optimal nb for which the bilevel Yule–
ielsen model yields spectral predictions nearly equiva-
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ent to the ones given by the continuous Yule–Nielsen
odel. Since this optimal nb corresponds to the lowest dot

ain, its variation as a function of the blurring coefficient
s substantially the same as in Fig. 5, where a dot gain of
ero was assumed. For a blurring coefficient �=0.1, the
ptimal value nb=7.5 can be read on both Figs. 5 and 7.
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