
Figure 8.14: Explanation, in the continuous-world spectrum, of the sub-Nyquist artifact
that occurs when sampling a continuous cosine function g(x) = cos(2πfx)
whose frequency f is just slightly below half of the sampling frequency (1

2 fs).
(a) The continuous-world spectrum G(u) of our original cosine. (b) The
continuous-world spectrum of the sampled cosine. Note that the spectrum
(b) is an infinite replication of the original spectrum G(u), where the replicas
are centered about all the integer multiples of the sampling frequency fs.
Thanks to the first two impulse-pairs centered about its origin, the spectrum
(b) of the sampled cosine basically corresponds to a sum of two cosines: our
original continuous cosine, whose frequency is slightly below 1

2 fs, and a new
continuous cosine, whose frequency is slightly above 1

2 fs. In order to
formulate this claim more accurately, let us denote the sum of these two
cosines (with halved amplitudes, so that the sum remains bounded between
-1 and 1) by g1(x) = 1

2cos(2π [1
2 fs–ε]x) + 1

2cos(2π [1
2 fs+ε]x). The spectrum

G1(u) of this sum of cosines is shown in the figure in a separate panel (a').
Now, the continuous-world spectrum (b) is also the spectrum of the sampled
version of g1(x), using the same sampling frequency fs. To see this, note that
the spectrum (b) can be also considered as an infinite replication of the
spectrum G1(u), where the replicas are located, once again, about all the
integer multiples of fs: Because the impulse pairs of every two neighbouring
replicas of G1(u) fall exactly at the same points along the u axis, their halved
amplitudes simply add up on top of each other, giving back precisely the
spectrum (b). This means that the continuous-world spectrum (b) does not
only belong to the sampled version of our original cosine function g(x) =
cos(2πfx), but also to the sampled version of the cosine sum g1(x). This
means, in turn, that the sampled version of our given cosine g(x) is identical
to the sampled version of the cosine sum g1(x) (although obviously g(x) and
g1(x) themselves are different). Now, based on Sec. D.3 of Appendix D, we
know that the sum of two continuous cosines with slightly different
frequencies gives a beating modulation effect. Thus, the sub-Nyquist artifact
that appears when our original cosine g(x) is being sampled (see Fig.
8.13(f)) is simply the sampled version of the beating modulation effect that
occurs in the continuous cosine sum g1(x). (c), (d) Because the frequency of
our cosine function is below 1

2 fs, it can be perfectly reconstructed from its
sampled version as stipulated by the sampling theorem, by  multiplying  the
spectrum (b) with  a  rect  function (a 1-valued pulse) extending from –1

2 fs to
1
2 fs, or, equivalently, by convolving the sampled version of the cosine signal
with the corresponding sinc function. (e) When reconstructed by
multiplying the spectrum (b) with a non-ideal substitute of the ideal rect
function, debris of the new replicas that appeared in (b) due to the sampling
may still subsist in the spectrum, causing a visible sub-Nyquist artifact. As
shown in (b), this beating effect is generated by the sampling operation; but
as we can see in (e), it becomes actually visible due to the non-ideal
reconstruction. Note that the low beating frequency itself is not present in
the spectrum, meaning that it is not a true moiré effect.
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