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We propose a spectral prediction model for predicting the reflectance and transmittance of recto—verso halftone
prints. A recto—verso halftone print is modeled as a diffusing substrate surrounded by two inked interfaces in
contact with air (or with another medium). The interaction of light with the print comprises three components:
(a) the attenuation of the incident light penetrating the print across the inked interface, (b) the internal re-
flectance and internal transmittance that accounts for the substrate’s intrinsic reflectance and transmittance
and for the multiple Fresnel internal reflections at the inked interfaces, and (c) the attenuation of light exiting
the print across the inked interfaces. Both the classical Williams—Clapper and Clapper—Yule spectral predic-
tion models are special cases of the proposed recto—verso reflectance and transmittance model. We also extend
the Kubelka—Munk model to predict the reflectance and transmittance of recto—verso halftone prints. The ex-
tended Kubelka—Munk model is compatible with the proposed recto—verso reflectance and transmittance
model. In the case of a homogeneous substrate, the recto—verso model’s internal reflectance and transmittance
can be expressed as a function Kubelka—Munk’s scattering and absorption parameters, or the Kubelka—Munk’s
scattering and absorption parameters can be inferred from the recto—verso model’s internal reflectance and
transmittance, deduced from spectral measurements. The proposed model offers new perspectives both for
spectral transmission and reflection predictions and for characterizing the properties of printed diffuse
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1. INTRODUCTION

Modeling the interaction of light, ink halftones, and a pa-
per substrate has been a research challenge since the
early 1930s. Many different phenomena influence the re-
flection or transmission spectrum of a color halftone patch
printed on a diffusely reflecting or transmitting substrate
(e.g., paper). These phenomena comprise (a) the surface
reflection of incident light (Fresnel reflectance) at the in-
terface between the air and the paper; (b) scattering, lat-
eral propagation, and reflection of light within the sub-
strate; and (c¢) the internal reflections (Fresnel reflections)
at each interface between the paper and the air. In addi-
tion to these purely optical phenomena, the ink interacts
with the paper at print time, leading to ink spreading and
possibly to the partial penetration of ink within the paper
substrate.

Most existing spectral prediction models predict the re-
flectance but not the transmittance of halftone prints.
They also assume that the prints are printed only on their
upper side. In this paper we present a spectral prediction
model predicting both the spectral reflectance and the
transmittance of halftone prints, printed either on one
side (the recto) or on two sides (recto—verso) of a printed
sheet. We also extend the Kubelka—Munk theory® to sub-
strates printed on one or both sides with ink halftones.
We then establish the relationship between the intrinsic
reflectance and transmittance coefficients of the proposed
reflection and transmission prediction model and the
Kubelka—Munk scattering and absorption coefficients.

Early attempts to model the reflectance of a halftone
print include the Neugebauer spectral reflectance predic-
tion model,2 which neglects both the lateral propagation
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of light within the paper and the Fresnel reflections at the
print—air interface. Yule and Nielsen® and Vig,cgfialno4 im-
prove the Neugebauer model by applying a power func-
tion to the reflectances, which accounts for the lateral
propagation of light within the paper and for the internal
Fresnel reflections. The Clapper—Yule reflectance model®
improves the Neugebauer model by explicitly modeling
the internal (Fresnel) reflections at the paper—air inter-
face and by accounting for the lateral propagation of light
within the paper. The Williams—Clapper model,® support-
ing solid ink prints only, accounts explicitly both for the
Fresnel reflections at the upper paper—air interface and
for the obliqueness of the light rays traversing the ink
layer. The Kubelka—Munk model predicts the reflectance
and transmittance of a single uniformly diffusing layer
substrate.’” Kubelka® extended the model to nonuni-
formly diffusing, possibly multilayer, substrates but with-
out accounting for the internal Fresnel reflections at the
substrate interface with the air. Saunderson introduces a
correction® that computes the exterior reflectance from
the Kubelka—Munk reflectance (internal reflectance)
model, accounting for multiple internal Fresnel reflec-
tions.

More recent reflectance models include probabilistic
models of the lateral propagation of light within the sub-
strate but do not consider explicitly the internal Fresnel
reflections at the interface between the print and the
air.!>12 Reflectance models accounting for the internal
Fresnel reflections are extensions of the Clapper—Yule
model®® or of the Kubelka—Munk model.'® Recent ex-
tensions of the Kubelka—Munk model'”*® concern absorb-
ing and inhomogeneous scattering media, such as prints
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in which the solid ink partially penetrates into the diffus-
ing substrate.

In this paper we rely on the following assumptions. The
recto—verso print is composed of five superposed optical
elements with which light behaves differently: one
strongly scattering layer (paper substrate) at the center,
two different absorbing and nonscattering layers (solid or
halftone inked layers) at both sides of the paper layer, and
two interfaces. The recto of the recto—verso print is the
side illuminated by the light source and the verso is the
other side.

Let us present the characteristics of the interfaces, the
inked layers, and the substrate. The interfaces are as-
sumed to be flat. They have a relative refractive index n,
and the ratio of the print’s refractive index to the refrac-
tive index of air is equal to 1. The inked layers are non-
scattering, nonflorescent, and of constant thickness. They
have a spectral transmittance #(\), called normal trans-
mittance, corresponding to the attenuation of light cross-
ing the layer along its normal direction. The superposi-
tion of two solid inks yields a new colorant, e.g., the
superposition of magenta and yellow inks yields the red
colorant. For a halftone inked layer, each contributing ink
is deposited as a dot screen covering a given fraction of
the print’s surface. The inked layer is a juxtaposition of
small colorant areas resulting from the superposition of
the ink dot screens. Each colorant area k is characterized
by its fractional surface coverage a, and its spectral
transmittance ¢;(\). When printing with cyan, magenta,
and yellow inks, we obtain the colorants white (no ink);
cyan, magenta, yellow, red (magenta+yellow); green
(cyan+yellow); blue (cyan+magenta); and black (cyan
+magenta+yellow). In analogy with the spectral Neuge-
bauer reflectance model,z’4 the average transmittance #(\)
of the halftone inked layer for normal incidence is given
by the sum of the transmittances ¢,(\) of the colorants
weighted by their respective fractional surface coverages
ap:

8
tN) = >, atp(N). (1)
k=1

We assume that the inks do not penetrate the sub-
strate. In analogy with the Clapper—Yule model,® we as-
sume that lateral light propagation within the substrate
is important with respect to the halftone screen period.
Both the inked layer and the substrate are assumed to
have the same refractive index. Since neither the inked
layers nor the interfaces with air scatter light, we con-
sider an ink layer with its interface as a single optical el-
ement called the colored interface. Because the inks
printed on the recto and the verso are generally different,
the recto- and verso-colored interfaces are accordingly dif-
ferent. The substrate is strongly scattering and nonfluo-
rescing. It may have different optical properties at its
recto and verso sides. An incident light penetrating the
substrate is immediately diffused and its initial angular
distribution is canceled. Therefore, the optical properties
of the substrate alone are independent of the incident an-
gular distribution. When illuminated at its recto side (its
verso side), its reflectance is called recto intrinsic reflec-
tance (verso intrinsic reflectance). According to the prin-
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ciple of nonpolarity of transmittance introduced by
Kubelka,® the substrate has a single intrinsic transmit-
tance, this one being independent of the side of illumina-
tion. We assume that light emerging from the substrate is
uniformly distributed over the hemisphere, i.e., it is Lam-
bertian.

Let us now consider the superposition of the recto-
colored interface, the substrate layer, and the verso-
colored interface. Once the incident light has crossed the
recto-colored interface, it penetrates the substrate where
it undergoes multiple scattering. Light scattering in a
turbid media is modeled according to different theories
depending on the scale on which the interaction of light
with the scattering medium is considered. Models based
on the radiative transfer equation describe scattering at a
microscopic scale.?’ Such models are computationally
heavy and their application to complex media such as pa-
per bulk is not easy. In the case of infinitely large and thin
layers of strongly scattering media,?! the radiative trans-
fer theory can be reduced to a two-flux model, known as
the Kubelka—Munk model."” An alternative approach, in-
spired by the Williams—Clapper model,® considers the in-
teraction of light with the substrate in terms of multiple
reflections between the substrate and the print—air inter-
face. In this paper we pursue this approach for modeling
the reflectance and transmittance of recto—verso prints.

Reflectance and transmittance of prints depend on the
illuminating and measuring conditions, i.e., of the angu-
lar distribution of the incident light and of the light cap-
tured by the measuring device. This is due to the angular
dependence of the attenuations undergone by light when
crossing the interfaces and the inked layers, therefore
when crossing the colored interfaces. In our model, we
separate the expressions of reflectance and transmittance
in three components, one depending on the incident light
angular distribution, the second depending on the cap-
tured light angular distribution, and the third one inde-
pendent on the illuminating and capturing conditions.
The component T},, relative to the penetration of the in-
cident light into the print, represents the fraction of the
source flux that reaches the substrate (Fig. 1). It accounts
for the attenuations undergone while crossing the recto-
colored interface. It depends on the angular distribution
of the incident light. The component 7', relative to the
emergence of the detected light, represents the fraction of

o T, T,
recto colored {}
interface { .—_—._4} - = —I_L

nonsymmetric
substrate

verso colored
interface

Fig. 1. Interaction of light with the recto—verso print compris-
ing the attenuation of the penetrating light (7},), the attenuation
of the emerging light (7,), the print’s internal reflectance (R,,),
and internal transmittance (7',). The substrate is characterized
by its intrinsic reflectance p; at its recto side, p, at its verso side,
and by its intrinsic transmittance 7. The reflectances of the col-
ored interfaces are r; at the recto and ry at the verso.
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total diffuse light emitted by the substrate that reaches
the detector. It accounts for the attenuations undergone
by the emerging light while crossing the upper (for the
print’s reflectance) or lower (for the print’s transmittance)
colored interface. The third component, which is different
for the reflectance and the transmittance, comprises the
interaction of light inside the print between the substrate
and the colored interfaces. The print’s internal reflectance
R, represents the ratio of the total flux emerging from
the substrate at the recto side to the flux received by the
substrate from the light source. Likewise, the print’s in-
ternal transmittance T, represents the ratio of the total
flux emerging from the substrate at the verso side to the
flux received by the substrate from the light source.
Hence, our recto—verso prediction model expresses the
global reflectance R of the halftone recto—verso print as

R=T,T.,R,,. (2)
and its global transmittance 7T as
T= TinTeXTm . (3)

We introduce a multiple reflection—transmission model
allowing us to express the print’s internal reflectance R,,
and internal transmittance T, by taking into account all
possible combinations of successive reflections and trans-
missions. The internal reflectance and internal transmit-
tance are functions of the recto intrinsic reflectance, the
verso intrinsic reflectance and the intrinsic transmittance
of the substrate, and the reflectances of the recto-colored
interface and of the verso-colored interface.

Before presenting in detail the multiple reflection—
transmission model, we first recall in Section 2 the basic
notions of geometric optics necessary for describing the
reflection and the transmission of light by an interface. In
Section 3, we present the attenuation T}, of incident light
penetrating the print with respect to the illumination ge-
ometry and the attenuation T, of light exiting the print
with respect to the capturing device geometry. After hav-
ing expressed the print’s internal reflectance R,, and its
internal transmittance T}, (Section 4), we develop the
complete expressions of the print’s global reflectance and
transmittance when the incident light is collimated and
the capturing device is a radiance detector (Section 5). We
also show how to obtain the corresponding expressions
when incident light is diffuse and/or when the exiting
light is captured by an integrating sphere. In Section 6,
we express both the internal and the intrinsic reflectances
and transmittances of the substrate layer as functions of
the Kubelka—Munk parameters. For this purpose, we ex-
tend the Kubelka—Munk model to recto—verso halftone
prints by considering the reflections of light at the colored
interfaces as boundary conditions of the Kubelka—Munk
differential equation system. We also show that the same
expressions for the internal reflectance and transmit-
tance are obtained by inserting into our multiple
reflection—transmission model the substrate’s intrinsic re-
flectance and transmittance expressed according to the
Kubelka—Munk model. In Section 7, we show that in the
case of a solid colorant print, the Williams—Clapper
model® is a special case of our multiple reflection—
transmission model. In the case of a halftone print, the
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classical Clapper—Yule model® also becomes a special case
of our model. A method for calibrating the recto—verso re-
flectance and transmittance model is proposed in Section
8. An experimental verification of the model is performed
in Section 9. We draw our conclusions in Section 10.

2. OPTICS OF AN INTERFACE: BASIC
NOTIONS

The Fresnel reflections and transmissions of light at the
print—air interface are of primary importance in a model
describing the interaction of light with a print. Different
expressions describe the reflection and transmission de-
pending on whether the incident light is collimated or dif-
fuse. We consider the Fresnel reflection and transmission
of a collimated irradiance or radiance as well as of a dif-
fuse Lambertian irradiance. The developed expressions
are reused in the following sections for colored print—air
interfaces.

A. Reflection and Transmission of Collimated
Irradiance
A collimated light flux ®; flowing within an infinitesimal
solid angle d()y illuminates an element ds of a flat inter-
face between a medium m of refractive index ny and a
medium m; of refractive index n;. In medium m,, the
light flux propagates along a direction (6y, ¢o), where 6 is
the polar angle formed with the interface’s normal vector,
and ¢, is the azimuth angle formed with an arbitrary ref-
erence vector of the interface. At the interface, the flux ®;
is decomposed into a reflected flux ®,.=R;(6))P; and a
transmitted flux ®,=T;(6,)P;, where Ry;(6y) and Ty1(6p)
are the Fresnel reflection and transmission coefficients,
given by the Fresnel formulas as functions of the inci-
der;ge polar angle 6, and the refractive indices ny and
niy.
The respective incident, reflected, and transmitted
fluxes form with respect to the element of interface ds an
incident irradiance E;, a reflected irradiance E,, and a
transmitted irradiance E,. The reflectance of the interface
is E,/E;=Ry;(6y) and its transmittance is E,/E;=Ty1(6).

Considering the incident, the reflected, and the trans-
mitted fluxes relatively to their respective propagation di-
rections (6y, ¢), (6,,¢,), and (61, p;), their respective in-
finitesimal solid angles dQy=sin 6,dfydey, dQ,
=sin 6,d6,d¢,, and dQ;=sin #;d#;d¢;, and the interface
element ds, we obtain an incident radiance L;(6,, ¢), a
reflected radiance L,(6y, ), and a transmitted radiance
L,(6y, o). The incident radiance is defined as®>

®.

12

ds cos 6, sin 6,d 6yd ¢y

L;(6o, po) =

According to Snell’s laws, the azimuth angles of the re-
flected and transmitted radiances are ¢,=@1=¢py+ 7. The
polar angle of the reflected radiance is 6,.=6,. The polar
angle 6#; of the transmitted radiance is related to the
angle 6, by Snell’s refraction law:

ngsin 6y =nq sin 6;. (4)

The reflected radiance is
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R1(6p);
ds cos 6, sin 6yd Gyd ¢y

Lr(ao, ¢0) = = R01(<90)Li(90, d’o)-

(5)

The product at the left and at the right of Eq. (4) with the
differential of Eq. (4) yields

n? cos 6 sin Gyd 6y =n? cos 6, sin 6;d6;. (6)

Thanks to Eq. (6) and with d¢y=d¢;, the transmitted ra-
diance, initially defined as

T1(60)P;
ds cos 6; sin 6;d6;d¢;’

Lt(eo, ‘f’o) =

can also be expressed as

L (8o, o) = (n1/10)*T1(66)L; (65, o). (7

The term (n1/n)? is characteristic of the transmission
of radiance across an interface from medium mg, to me-
dium m; and accounts for the change in solid angle and
projected area due to the refraction.

B. Properties of the Fresnel Reflection and Transmission
Coefficients

Since the energy is conserved at the interface, the Fresnel
reflection and transmission coefficients Ry;(6;) and
T1(6,) satisfy the relationship

R1(6) + T1(6p) = 1. (8)

We have the same Fresnel transmission coefficient both
for an incident flux from medium m, with an angle 6, and
for an incident flux from medium m; with an angle 6; re-
lated to angle 6, by Eq. (4):

To1(0p) = T1o(64). 9)
The combination of Egs. (8) and (9) yields

R1(6) = R14(64), (10)

Rq9(61) + T10(61) = 1. (11)

C. Reflection and Transmission of Lambertian
Irradiance by an Interface

Let us now consider that the interface is illuminated by
Lambertian irradiance incident from medium m. A pro-
portion rgy, called diffuse reflectance of the interface, is
reflected by the interface. A proportion ¢y, called diffuse
transmittance, is transmitted across the interface. If the
interface is illuminated by a Lambertian irradiance from
medium m, the diffuse reflectance and diffuse transmit-
tance are called rqy and ¢;o. We present in detail the cal-
culation of ry;. The other expressions, ¢y, 19, and ¢, can
be obtained by following the same line of reasoning.

Let us call E; the incident Lambertian irradiance. The
interface receives from each direction (6, ¢g) of the hemi-
sphere the same radiance L;=E;/w, contained within the
infinitesimal solid angle dQy=sin 6y,dfyd¢y. The corre-
sponding element of irradiance dE;(6y, ¢¢) is
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E;
dEi(eo, ¢0) = Li cos 00(‘190 = — CO0Ss 00 sin 00d00d¢0.
ko

(12)

This element of irradiance dE;(6,, ¢) is reflected by the
interface in a proportion R(;(6y) given by the Fresnel for-
mulas. The reflected element of irradiance dE,(6y, ¢g) is
therefore

E;
dE (6, $o) = Ro1(6p)— cos 6 sin 6yd Oyd ¢y .
ar

The total reflected irradiance E, is the sum over the
hemisphere of the reflected elements of irradiance:

2 72 E.
12

Er = J f ROI(GO)_ CcoSs 90 sin 00d00d¢0. (13)
$0=0 < 6p=0 &

Since the integrated terms do not depend on ¢y, the in-
tegration according to ¢, yields a factor of 27. After rear-
ranging, Eq. (13) becomes

/2
Er:EiJ ROl(ﬂo)sin 200d00d¢0 (14)
0p=0
The external diffuse reflectance rg; of the interface,
given by the ratio E,/E;, was first presented by Judd?%:

/2
Top= f Ry1(6p)sin 26,d6,. (15)
0y=0

Similarly, the external diffuse transmittance of the in-
terface ¢ is

w2
to1 = f T01(00)Sin 2 00(100. (16)
0p=0

Equation (8) expresses the conservation of energy at
the interface. By inserting this relation into the integral
of Eq. (16), we may verify that the energy is also con-
served for a diffuse illumination:

t01=1—r01. (17)
The diffuse reflectance of the interface rg is
/2
rio= f R1(6,)sin 26,d 6y, (18)
0,=0
and the diffuse transmittance of the interface ¢ is
/2
t10= f Tlo(ﬁl)sin 201d91= 1—7"10. (19)
0,=0

Let us establish the relationship between ¢y; [Eq. (16)]
and ¢19 [Eq. (19)]. According to Eq. (9), T91(69)=T10(61),
and according to Eq. (6), n(z) sin 26,d 00=n% sin 26,d 6;.
Thanks to these equalities, we obtain the relation

t1o= (no/n1)’to;. (20)

Numerical values of rg1, £91, 719, @and ¢1g are given in Ap-
pendix A for a relative index of refraction of 1.5. Once the
numerical value of ry; is known, the values of ¢4, 19, and
t10 can be directly deduced from Egs. (17), (19), and (20).
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D. Reflection of Lambertian Irradiance by a Colored
Interface

A colored interface, i.e., an interface adjacent to an inked
layer, illuminated by Lambertian irradiance at the side of
the inked layer has a reflectance r(¢) depending on the
inked layer transmittance ¢. Since the inked layer is non-
scattering, light rays cross the inked layer along straight
lines having a path length and therefore an attenuation
that depend on their orientation. Thus, the diffuse reflec-
tance of colored interfaces accounts for the attenuation
within the inked layer and for the Fresnel reflection at
the interface for each direction of propagation of the inci-
dent light.

The Lambertian irradiance E;, coming from medium
m1, is decomposed into elements of irradiance dE;(6;, ¢;)
[Eq. (12)]. Each element of irradiance is reflected by the
interface with a factor of Rq((6;) and traverses twice, be-
fore and after the reflection, a path of relative length
1/cos #; within the inked layer. According to Beer’s law,
the element of irradiance is attenuated by a factor ¢2/¢°s o1,
with ¢ being the attenuation undergone by the light cross-
ing the inked layer along its normal direction. The re-
flected element of irradiance is

E;
dEr(Gl, ¢1) = tZ/COS 91R10(01)— Ccos 91 sin 01d01d¢1.
o

(21)

We sum up all the reflected elements of irradiance,
yielding the reflected irradiance E,, and carry out the
same simplifications as for Eq. (14). The resulting expres-
sion for the reflectance of the colored interface, given by
the ratio E,/E;, has been first introduced by Williams and
Clapper6:

/2
r(t) = f t2/cos HIR 10( ﬁl)sin 291(1 01 . (22)
61=0

In Table 2 (see Appendix A), for a print—air relative re-
fractive index of 1.5, we tabulate numerical values of r(t)
as a function of the colorant layer normal transmittance ¢.

In halftone patches, the colored interface is composed
of several colorant areas of respective transmittances ¢,
and surface coverages a;. In each colorant area, the inter-
nal reflectance is r(¢;). Each colorant area contributes to
the total reflectance in proportion to its surface coverage
ay,. Therefore,

/2
rt)= D apr(ty) = D ay £2°°* "R 10(6y)sin 26,6,
k k 6,=0
(23)

In Eq. (23), we ignore the fact that some oblique light
rays, located close to the frontier between two colorants,
may start their path in a colorant and finish it in a differ-
ent colorant. This phenomenon concerns mainly light rays
oriented according to a large angle. However, since the
term t,%/ s 01 Jecreases rapidly toward zero as angle 6; ap-
proaches 7/2, and since the colorant areas are large com-
pared with the inked layer’s thickness, we assume that
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the contribution of highly inclined light rays internally re-
flected at the frontier between two colorant areas is neg-
ligible.

3. PENETRATION AND EMERGENCE OF
THE LIGHT ACROSS THE COLORED
INTERFACES

The incident light is attenuated by a factor T, during its
path from the air (medium m of refractive index ng=1
denoted by subscript 0) to the substrate (medium m; of
refractive index n; denoted by the subscript 1). We call
n=ny/ng the relative refractive index of the interface be-
tween media mq and m. The factor T}, depends on the ge-
ometry of illumination. We therefore develop an expres-
sion T;,(6p) for a collimated illumination at incidence 6,
and an expression ng) for a diffuse illumination.

Let us first consider a collimated incident light forming
an angle 6, with the normal of the print. A fraction Ry;(6,)
is specularly reflected at the air side of the recto interface.
We ignore this specular reflection since, in most measur-
ing instruments, it can be discarded from the measure-
ments. The rest of the light, i.e., a fraction Ty;(6,), is
transmitted across the recto interface with an angle 6; ac-
cording to Snell’s law [Eq. (4)]. It crosses the ink layer of
normal transmittance ¢ along a path of relative length

w(6) = 1/cos 6; =[1 - (sin Gy/n )]~ (24)

and therefore undergoes, according to Beer’s law,? an at-
tenuation t#(%) within the inked layer. It then penetrates
the diffusing substrate. The total attenuation factor
T;n(6y) applied to the incident irradiance oriented with an
angle 6, while passing from the air to the diffusing sub-
strate is

Tin(00) = To1(6o)t ™). (25)

If the inked layer is composed of several colorants of re-
spective transmittances ¢, and fractional surface cover-
ages ay, the attenuation factor T;,(6,) becomes

Tin(00) = To1(60) >, ati ™. (26)
k

We now consider Lambertian illumination. Let us fol-
low the same line of reasoning as for the case of an inter-
face, presented in Section 2 [Eqs. (12)—(15)]. Instead of
considering the reflection of the elements of irradiance
dE;(6y,¢y) with a proportion Ry;(6), we consider their
transmission across the interface with a proportion
To1(6p) and across the inked layer with a proportion ¢##(%),
Thus, the fraction Tﬁl‘f) of incident irradiance that is trans-
mitted across the colored interface has the same expres-
sion as in Eq. (15), where Ry(6,) is replaced by
To1( o)t %:

/2
T = f To1(6p)t*%) sin 26,d 6. (27
0y=0

Equation (27) can be approximated with excellent accu-
racy by separating the transmission across the interface
and the transmission across the inked layer. The incident
Lambertian irradiance E; is first transmitted across the
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interface according to a proportion ¢y; [Eq. (16)]. The irra-
diance t(1E; crosses the inked layer and is attenuated by a
factor ¢#. The total attenuation applied to the incident ir-
radiance is therefore approximated as

The exponent u is obtained numerically, for a given re-
fractive index n, by minimizing the sum of the squared
differences between approximation (28) and the exact ex-
pression given in Eq. (27) (see Appendix B). For n=1.5,
the optimal value of w is 1.13. The difference between the
exact and the approximated values of T}, is inferior to
0.001. Intuitively, u represents an average path traversed
by the light in the inked layer.

When the inked layer is composed of several colorants,
of respective transmittances ¢, and surface coverages ay,
the approximated attenuation factor Tgff) becomes

TD =10, > ayth. (29)
k

We proceed for the emerging light in the same manner
as for the penetration of the incident light, i.e., we express
the factor T\, relative to the light path from the substrate
to the detector, according to the geometry of observation.
We develop an expression Tey(6;) for the capture of light
by a radiance detector at an angle 6, and an expression
ng) for the capture of light by a integrating sphere.

Let us first consider that the measuring device is a ra-
diance detector, which captures the light exiting the print
with an angle 6. In the print, the substrate emits a Lam-
bertian irradiance E, toward the interface, i.e., a constant
radiance E,/7 in all directions of the hemisphere. Only
the radiance emitted into the particular direction 6;, such
that n sin 6] =sin 6}, is captured by the radiance detector.
It first crosses the inked layer along a path of relative
length 1/cos 6;=pu(6;), expressed as in Eq. (24), and is at-
tenuated by t#%). Then the radiance t“(%)Ep/ T crosses
the interface. According to Eq. (7) and the fact that this
radiance is transmitted from medium m; to medium m,,
the transmitted radiance L, that the detector captures is

Ly = (1n)?Tyo(6))t* DE /

where T'10(67)=T01(6;) according to Eq. (9). Thus, the frac-
tion T'ey(6;) of the irradiance E, emitted by the substrate
and captured by the radiance detector at angle 6 is

Ly Toi(65)

Tex(6p) = — =
exl ) E, mn?

4%, (30)

or, for an inked layer composed of several colorants,

To1(6p) .
To(6) = —5— > aptt ™. (31)
mn k

The integrating sphere captures the total emerging ir-
radiance, which corresponds to a fraction Tf;? of the irra-
diance E, emitted by the substrate. Let us decompose the
incident irradiance E, into elements of irradiance
dE(6;, ¢7). We express their attenuation as a function of
their orientation (6;, ¢;) and sum them up to obtain the
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total emerging irradiance. Since the irradiance E, emit-
ted by the substrate is Lambertian, the elements of irra-
diance dE(6;, ¢;) are

E
dE(6], ¢}) = — cos ¢ sin 6,d6;d ).
o

They undergo an attenuation #/0s % in the ink layer
and are transmitted into the air by a factor of T';o(6;). We
sum up all the emerging elements of irradiance whose in-
cident direction (6], ¢;) belongs to the hemisphere. The
resulting integral yields the emerging irradiance E. As
previously, the integration according to the azimuth angle
yields a factor of 27, and the expression 2 cos 6; sin 6 is
replaced with sin 26;. The emerging irradiance is there-
fore

/2
E=E, J tleos 17, (6))sin 26,d6). (32)
01=0

The ratio E/E, yields the attenuation T'? of the diffuse
light emerging from the substrate into the air:

/2
T = f tlfeos (1T, (6))sin 26,d 6. (33)
01=0

Note that when 6] exceeds arcsin(1/n), the element of
irradiance is totally reflected and T'j4(6}) is zero. The in-
tegration domain in Eq. (32) can therefore be reduced to
[0, arcsin(1/n)]. We may also express the terms under the
integral as a function of 6, the angle in the air, instead of
01, the angle in the print. The term T(6;) is equal to
T01(6;). The term 1/cos 6] was defined as u(6}) in Eq. (24).
According to Eq. (6), sin26;df; is equal to
(1/n)%sin 26,d 6y. The integration domain according to 6
is [0, 7/2] and Eq. (33) becomes

/2
40Ty, (6))sin 26, 6). (34)
01=0

(d) !
Tex ="

The same approximation that was applied to Eq. (27)
also applies to Eq. (33), i.e., we consider separately the at-
tenuation ¢ applied to the Lambertian irradiance in the
inked layer and its transmission across the interface:

T ~ iy, (35)

where ¢, is the transmittance of the interface, expressed
in Eq. (19). When the inked layer is composed of several
colorants, of respective transmittances ¢, and surface cov-
erages ay, the attenuation factor TSQ becomes

TD ~ 110> ath. (36)
k

Since light can exit the print across both interfaces, we
have one factor T, for light exiting at the recto, and an-
other factor T, for light exiting at the verso. Their ex-
pressions are given by approximation (35) or (36), with
the surface coverages a, and colorant transmittances ¢,
relative to, respectively, the colorants printed on the recto
and on the verso of the print.
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4. MULTIPLE INTERNAL REFLECTIONS
AND TRANSMISSIONS BETWEEN
THE PRINT’S INTERFACES

Once the incident light has penetrated the print, and be-
fore it emerges across the recto- or the verso-colored in-
terface, light is scattered multiple times within the sub-
strate (see Fig. 1). At the recto, light may be reflected by
the recto-colored interface (reflectance r;) or by the sub-
strate (intrinsic reflectance p;). At the verso, light may be
reflected by the verso-colored interface (reflectance ry) or
by the substrate (intrinsic reflectance py). Light may also
be transmitted through the substrate (intrinsic transmit-
tance 7). Considering the multiple reflections and trans-
missions occurring within the substrate layer bounded by
the colored interfaces, the fraction of penetrating light
ready to emerge at the recto is R,,, the internal reflec-
tance of the print, and the fraction ready to emerge at the
verso is T, the internal transmittance of the print.

The multiple paths followed by light before exiting the
print are illustrated by the infinite graph of Fig. 2, where
arcs represent interactions of the light with the substrate
(reflection or transmission by the substrate layer) and
nodes represent interactions with the colored interfaces
(internal reflection). At the starting node we have the in-
cident irradiance W;, which has already crossed the recto-
colored interface. All other nodes of the graph are possible
ending nodes, where light may exit the print. Between the
starting node and a given ending node, light may follow
any of the possible paths along the directed arcs of the
graph. Along a given path, an attenuation factor is ap-
plied at each encountered arc and node. Horizontal arcs,
weighted by a factor p; or py, represent a reflection by the
substrate, respectively, at the recto or verso side. Vertical
arcs, weighted by a factor 7, represent a transmission
across the substrate. Nodes circled with a light line,
weighted by a factor r{, represent an internal reflection at
the recto-colored interface. Nodes circled with a bold line,
weighted by a factor ry, represent an internal reflection at
the verso-colored interface. Horizontal arcs link two nodes
relative to a same interface and vertical arcs link two
nodes relative to different interfaces. Thus, in the graph
of Fig. 2, the nodes belonging to the same horizontal line
are relative to the same (recto- or verso-) colored inter-
face.

Fig. 2. Representation of the paths followed by the diffuse light
within the print, accounting for the reflections by the substrate
(reflectance p; at the recto side and p, at the verso side), the
transmissions by the substrate (transmittance 7), and the reflec-
tions at the colored interfaces (reflectance r; at the recto and r, at
the verso).
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Let us calculate the total internal irradiance W, that is
ready to emerge at the recto side, which contributes to the
print’s reflectance, and the total internal irradiance W,
that is ready to emerge at the verso side, which contrib-
utes to the print’s transmittance.

We call W, the sum of the irradiances corresponding to
the paths ending at the nodes of the first row:

W,0=Wi[p1+r1p%+r?p§+ ...]=Wip1[1+r1p1+r%p%...].
(37)

Equation (37) contains a geometric series converging
toward 1/(1-ryp;). The irradiance W, contributes to the
total illumination of the recto-colored interface:

pP1

Wro = Wi (38)

1-ripr

We call W, the sum of the irradiances corresponding to
the paths ending at the nodes of the second row. Such
paths follow exactly one vertical arc. Let us first consider
the paths following the first vertical arc (leftmost vertical
arc starting at W;). Once having followed the vertical arc
(attenuation factor 7), they may continue along the second
row, each following arc yielding an attenuation factor p,
and each crossed node yielding an attenuation factor ry.
In analogy with Eqgs. (37) and (38), the sum of the corre-
sponding irradiances yields a geometrical series 1/(1
—rgpg). Therefore, the irradiance corresponding to the
paths following the first vertical arc and ending at the
nodes of the second row is W;7/(1-rgps).

We now consider the paths following the second vertical
arc. Prior to following the vertical arc, they follow one
horizontal arc (attenuation factor p;) and cross one node
on the first row (attenuation factor r;). They follow the
vertical arc (attenuation factor 7) and then may continue
along the second row [yielding a geometrical series 1/(1
—ropg)l. These paths contribute to an irradiance
Wipiri7/(1=rgpy).

By considering all the successive vertical arcs, and by
summing all the resulting irradiances, we obtain for the
second row a total irradiance W;,, contributing to the to-
tal illumination of the verso-colored interface:

T T T

Wyo=W; +r1p1 +(r1pp)?
1-rops 1-ropy

+ ...
1-ropy

(39)

After factorizing Eq. (39) by the term 7/(1-rgpy), the
infinite sum yields a geometric series converging toward
1/(1-ryp1). The expression of W,y thus becomes

-
W, .
(1 -r1p1) (A =rapy)

We call W, the sum of the irradiances corresponding to
the paths ending at the nodes of the third row. This irra-
diance can be derived from the irradiance W,, by consid-
ering that, instead of ending at the nodes of the second
row, the paths cross one additional node on the second
row (attenuation factor ry), follow one vertical arc (attenu-
ation factor 7), and continue along the third row [geo-
metrical series 1/(1-r1p;)]l. We obtain for the third row a

W=
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total irradiance W,, contributing to the total illumination
of the recto-colored interface:

roT r272

W, =W, =W .
T ) (1= rp)A(1 - rapo)

We call W;; the sum of the irradiances corresponding to
the paths ending at the nodes of the fourth row. As above,
the irradiance W;; can be derived from the irradiance W,
by considering that, instead of ending at the nodes of the
third row, the paths cross one additional node on the third
row (attenuation factor ), follow one vertical arc (attenu-
ation factor 7), and continue along the fourth row [geo-
metrical series 1/(1-ryp9)]. We obtain for the fourth row a
total irradiance W;y, contributing to the total illumination
of the verso-colored interface:

r1r273

W =Wi .
T L= r1p)2(1 = ropy)?

By considering any of the successive rows, we obtain
the generic expression of the irradiances W,,, contributing
to the illumination of the recto-colored interface,

r’{_lrg 2k

WL b
(1=7r1p)" (1 = ropy)*

W,, = E=1,2...,

and the generic expression of the irradiances Wy, contrib-
uting to the illumination of the verso-colored interface,
rhrk 2kl

\A s
‘(1 =r1p)" (1 = ropg)t*?

Wy, = £=0,1,2... .

The total irradiance W, ready to emerge at the recto is
given by the sum of the irradiance W,,, £=0,1,2..., yield-
ing a geometric series

p 1 * rreT k
Wo=W—— W E[ r }

1-ripy ‘ri1=rip)ict | (L=rip)(1=rapy)
P1
=Wi|:
1-ripy
1 7'17'272
+ .
ri(1-ripy) (1—7“191)(1—7‘2P2)—’“1’”272

» p1—ralpepr — 7)
‘(1 =r1p)(1 = ropg) —rirg™

Similarly, the total irradiance W; ready to emerge at
the verso is given by the sum of the irradiance Wy, &
=0,1,2..., yielding also a geometric series

T ” |: r1r272 :|k
W, =W, >
(1 =r1p)(1 =r9pg) o | (1 =71p1)(1 =T5ps)

T

-w, .
(1=r1p)(1 = ropy) —rre7®

Finally, the print’s internal reflectance R,, obtained ac-
cording to our multiple reflection—transmission model is
given by the ratio W,/ W;,
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p1—ra(p1pe — 7)

Rm= >
(1=r1p)(1 = ropy) — rire®

(40)

and the internal transmittance 7', by the ratio W,/W,,

T

T, = . 41
(1—’"1P1)(1—’"2P2)—’”17'272 40

In the case where the print support is composed of a
uniform substrate layer, i.e., p;=py=p, Eqs. (40) and (41)
become

B P"‘z(P2— ) (42)
" (1—71P)(1—72P)—r1r272’
T
(43)

T, = .
" (1—7"1P)(1—7”2P)—’“1r272

We now have expressions for all the components of our
recto—verso prediction model: T}, (Section 3), T, (Section
3), R,, [Eq. (40)], and T, [Eq. (41)]. We may therefore ex-
press the global reflectance and the global transmittance
of a recto—verso print.

5. GLOBAL REFLECTANCE AND
TRANSMITTANCE OF A HALFTONE PRINT

According to the recto—verso model, represented by Eqs.
(2) and (3), the global reflectance (transmittance) of a
halftone print comprises the terms representing the pen-
etration of incident light, the print’s internal reflectance
(transmittance), and the term representing the emer-
gence of detected light.

Let us consider, for example, a print with a solid ink of
transmittance ¢; on the recto and a solid ink of transmit-
tance t, on the verso. The internal reflectance of the recto-
and the verso-colored interfaces are, respectively, r;
=r(ty) and ro=r(ty), with function r expressed by Eq. (22).
We consider a measuring geometry where collimated light
is incident at an angle 6, and reflected light is captured
by a radiance detector at an angle 6. The term T,(6,)
corresponding to the penetration of the collimated inci-
dent light is given by Eq. (25). The term T,(6,) corre-
sponding to the emergence of light toward the radiance
detector at the recto is given by Eq. (30) with ¢=¢;. An-
other radiance detector captures the light emerging at the
verso at an angle 6. The corresponding term T, (6;) is
given by Eq. (30) with ¢=¢,.

We derive from Eq. (2) a specific expression for the glo-
bal reflectance R of the print composed of a solid ink on
the recto and a solid ink on the verso for a collimated il-
lumination at angle 6, a radiance detector at angle 6,
and for light penetrating and emerging through the recto-
colored interface:

R= Tin( 00)Tex( G(I))Rm

T1(65) ,

[ 6,)
= T01(00)—2 t/f( o)+#(8
mn

« p1 - rta)lp1pz — 71
[1-r(t)pil[1 - r(te)ps] - r(t)r(ty) 7P

(44)
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The print’s global transmittance T is derived from Eq.
(3) for light penetrating through the recto-colored inter-
face and emerging through the verso-colored interface:

T =T (60)Tox(63) T,

1 01(6(;) 4

00) 16y

- To1(90)—2t’f( o)tg o
™™

X T .
[1-r(t)pll1 - r(t)pa] — r(t)r(ty)

Other specific expressions of R and T are obtained for a
diffuse illumination or when the emerging light is cap-
tured with an integrating sphere. The terms T, and Ty
are given, respectively, by Eqs. (28) and (35). If a halftone
color is printed on the recto and/or the verso, the inked
layer is composed of several colorants of respective trans-
mittances ¢, and surface coverages a;. The expression of
T}, is specified by Eq. (26) for a collimated illumination, or
approximation (29) for a diffuse illumination. The expres-
sion of T, is specified by Eq. (31) for a radiance detector,
or approximation (36) for an integrating sphere. The in-
ternal reflectances r; and rqy of the colored interfaces are
expressed according to Eq. (23).

Note that 45°/0° photospectrometers measure reflec-
tance factors, which are defined with respect to a refer-
ence white Lambertian diffuser of reflectance 1/, i.e., it
is the reflectance of Eq. (44) multiplied by a factor 7. The
same applies to transmission factors measured with
photospectrometers at an angle of 0°.

(45)

6. INTERNAL REFLECTANCE AND
TRANSMITTANCE OF THE PRINT:
KUBELKA-MUNK THEORY EXTENDED TO
RECTO-VERSO HALFTONE PRINTS

The internal reflectance R,, and transmittance T, of a
recto—verso halftone print can also be obtained by describ-
ing the light scattering within the substrate layer thanks
to the Kubelka—Munk theory. Light scattering is de-
scribed by a system of differential equations whose solu-
tions represent the irradiance propagating upwards and
the irradiance propagating downwards as functions of the
depth within the substrate layer. The reflectance of the
substrate is the ratio of the upward irradiance at the
depth 0 (recto substrate layer boundary) to the incident
irradiance. Its transmittance is the ratio of the downward
irradiance at the depth A (the verso substrate layer
boundary) to the incident irradiance.

The original Kubelka—Munk model was formulated for
diffusing layers bounded at the verso by a reflecting
background.7 The internal reflection of light at the recto
interface, i.e., the interface between the substrate and the
air, was ignored. Saunderson introduced a correction that
accounts for the light reflection at the recto interface.”
The classical methods used to solve the Kubelka—Munk
differential equation system require the introduction of
boundary conditions. In the present contribution, we rely
on the Laplace transform to calculate very simply the
general solutions of the Kubelka—Munk differential equa-
tion system independently of the boundary conditions (see
Appendix C).
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We then specify the boundary conditions according to
the optical elements bounding the scattering layer. The
boundary conditions yield one relation between the up-
ward and the downward irradiances at depth 0 and a sec-
ond relation at depth 4. We insert these relations into the
general solutions of the differential equation system, and
derive the irradiances reflected and transmitted by the
scattering layer and its boundaries. This yields the inter-
nal reflectance and the internal transmittance of the
bounded scattering layer. In Appendix D, we consider the
case where the scattering layer is bounded with reflectors
at its two sides. The original Kubelka—Munk expressions
for the reflectance of a layer superposed on top of a back-
ground and the Saunderson correction are derived in Ap-
pendix E as special cases of the expressions of our new
formulation of the Kubelka—Munk model.

In the present section, we apply the Kubelka—Munk
model extended with recto and verso reflectors to the spe-
cific case where the reflectors are interfaces colored with
halftone inks. By establishing the relation between the
parameters of our multiple reflection—transmission model
and those of the Kubelka—Munk model, we show that
both approaches are equivalent. The respective advan-
tages of the two approaches are presented at the end of
this section.

A. Kubelka-Munk Differential Equations

The substrate is characterized by a wavelength-
dependent absorption coefficient K(\) and a wavelength-
dependent scattering coefficient S(\). The printing sup-
port is a substrate layer of thickness A. In this layer, a
diffuse irradiance i, propagates upwards and a diffuse ir-
radiance i, propagates downwards. Both i, and i; are func-
tions of the depth x within the substrate layer. The depth
0 corresponds to the substrate layer’s boundary that re-
ceives the incident irradiance I (Fig. 3). The depth A cor-
responds to the other substrate layer’s boundary.

Let us consider a certain depth x within the substrate
layer. Between the depths x and x+dx, the downward ir-
radiance i; loses a fraction K dx of its irradiance through
absorption and a fraction S dx due to backscattering. It
receives a fraction S dx of the backscattered upward irra-
diance i,. We have

i+ dx) = i, (x) — (K + S)i,(x)dx + Si,(x)dx.  (46)

Between the depths x and x —dx, the upward irradiance
i, loses a fraction K dx of its irradiance and a fraction S dx

I ¢ 1 i{0)

0
oR!
i) i i (r—d)
¥ . % )
h
v ifh) I

Fig. 3. Upward and downward irradiances crossing a sublayer
of thickness dx at a depth x in the substrate layer.
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due to backscattering. It receives a fraction S dx of the
backscattered downward irradiance i,. We have

i(x - dx) = i,(x) — (K + S)i,(x)dx + Si,(x)dx.  (47)

According to the definition of the derivative

d i) —ile—dx) i(e+dx)-i(x)
_ _ " :

— =

dx dx

we rearrange Eqs. (46) and (47) and obtain the Kubelka—
Munk differential equation system

d
—i,(x) = (K + S)i.(x) - Siy(x),
dx

d
ait(x) =8i,(x) - (K+8)i,(x). (48)

The general solutions i,.(x) and i,(x) of the differential
equation system (48) can be determined by applying the
Laplace transform without having to introduce boundary
conditions. The Laplace transform enables us to convert
the differential equation system into a linear equation
system (Appendix C).

B. Internal Reflectance and Transmittance of the Print
The print’s internal reflectance R,, and transmittance 7,
are the ratios of the exiting irradiances i,(0) and i,(h), re-
spectively, to the incident irradiance I,. To obtain i,.(0)
and i,(h), we introduce boundary conditions with respect
to the reflectors that bound the substrate layer at x=0
and x=h. In Appendix D, we consider that the substrate
layer is bounded at x=0 by a reflector of reflectance ry and
at x=h by a reflector of reflectance r;,. We obtain an ex-
pression for i,(0) and i;(h) and derive both the internal re-
flectance Ry, [Eq. (D7)] and the internal transmittance T}
[Eq. (D8)] of the bounded substrate layer.

In the present case, the reflectors are the recto and the
verso interfaces incorporating each one their respective
inked layers. At x=0, the recto colored interface has a re-
flectance r; [Eq. (23)]. At x=h, the verso colored interface
has a reflectance ry. The print’s internal reflectance R,,
and transmittance T, are identical to the expressions of
R, and T, [Appendix D, Egs. (D7) and (D8)], with ro=r;
and ry=rg:

(1 - arg)sinh + bry cosh(bSh)

R, = ,
"™ (@ -ry-ro+ar;ry)sinh(bSh) + b(1 - riry)cosh(bSh)
(49)
b
T = B
™ (a-ry-re+ariry)sinh(bSh) + b(1 — ryry)cosh(bSh)
(50)
with
K+8S —_—
a= b = - Vaz -1.
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C. Intrinsic Reflectance and Transmittance of the
Substrate Layer

Let us express the intrinsic reflectance p and transmit-
tance 7 of the substrate layer. We consider the substrate
layer as a print that is not bounded by any reflector. The
reflectance and the transmittance of the print without re-
flectors are given by Eqgs. (D7) and (D8) with r¢=r,=0:

sinh(bSh)
p= R ) (5 1)
b cosh(bSh) + a sinh(bSh)
b
(562)

= b cosh(bSh) + a sinh(bSh)’

These expressions are identical to the expressions de-
rived by Kubelka.”

D. Comparison between our Model and the
Kubelka—-Munk Model Extended to Recto-Verso Halftone
Prints

The print’s internal reflectance R,, and transmittance 7,
have been expressed, for a symmetric printing support,
with the multiple reflection—transmission model in Egs.
(42) and (43). The substrate was characterized by its in-
trinsic reflectance p and its intrinsic transmittance 7. In
Eqgs. (51) and (52), we express p and 7 according to the
Kubelka—Munk model as functions of the absorption coef-
ficient K, the scattering coefficient S, and the substrate
layer thickness h. Let us replace in Eqs. (42) and (43) p
and 7 by their expressions given in Egs. (51) and (52). We
obtain the same expressions for the internal reflectance
R,, and the internal transmittance T, as the ones ob-
tained in Egs. (49) and (50) with the extended Kubelka—
Munk model. This shows the equivalence between our
multiple reflection—transmission model and the extension
of Kubelka—Munk’s model to a scattering layer bounded
by two colored interfaces.

Both models assume that the substrate is a strongly
scattering medium. In the case of halftone prints, they
also assume that the lateral propagation of light within
the substrate is large with respect to the screen element
period, i.e., the attenuation of light traversing an inked
layer is proportional to the sum of the colorant transmit-
tances weighted by their surface coverages.

However, in contrast to the Kubelka—Munk model, the
multiple reflection—transmission model is capable of pre-
dicting reflectances and transmittances for nonsymmetric
printing supports, or for complex multilayer supports.
The model may be applied to a print support composed of
several superposed layers, comprising at the center non-
scattering or weekly scattering layers. The only condition
is that the exterior layers are strongly scattering, ensur-
ing that light is completely diffused as soon as it pen-
etrates the support and that the print’s interfaces with
the air are illuminated from their print side by Lamber-
tian irradiance. The recto intrinsic reflectance, the verso
intrinsic reflectance, and the intrinsic transmittance of
the substrate can be deduced from spectral measure-
ments.
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7. RELATION TO THE WILLIAMS-CLAPPER
AND THE CLAPPER-YULE MODELS

The Williams—Clapper model enables us to predict the re-
flectance of a nonscattering solid colorant layer super-
posed on a diffusing background® of the same refractive
index. The background is composed of a substrate of re-
flectance pg. The original Williams—Clapper model relying
on collimated 45° illumination and 0° radiance capture
was extended to any illuminating and capturing
geometries. 267

Let us consider a colorant layer of normal transmit-
tance ¢ (attenuation of a light ray crossing the colorant
layer along its normal direction), a collimated illumina-
tion at an angle 6, and a radiance detector at an angle 6.
The reflectance is expressed according to the extended
Williams—Clapper model [Ref. 27, Eq. (44)] as

T01(0(')) thllcos 00t1/cos (7'6

Rywc=Ty(6
WwC 01( 0) ’7Tn2 1_ pBr(t)

, (53)

where r(¢) is the diffuse reflectance of the colored inter-
face [Eq. (22)]. Note that in the Williams—Clapper model,
the reflectance factor is defined with respect to a refer-
ence white perfect diffuser of reflectance 1/, i.e., it is the
reflectance multiplied by a factor 7.

Let us establish the relation between the substrate re-
flectance pp of the Williams—Clapper model and the sub-
strate’s intrinsic parameters of our multiple reflection—
transmission model (recto intrinsic reflectance p;, verso
intrinsic reflectance py, and intrinsic transmittance 7).
Obviously, if the substrate layer is perfectly opaque, no
light can reach the verso. If the substrate has no verso in-
terface, the light crossing the substrate exits at the verso
and does not contribute to the substrate reflectance pg, as
if its intrinsic transmittance would be 7=0. In that case,
the substrate reflectance pp is equal to its recto intrinsic
reflectance py, i.e., pg=p;. On the contrary, if the sub-
strate has a verso interface, the light transmitted across
the substrate may be reflected at this interface, cross the
substrate again, and contribute to the substrate reflec-
tance pg. To establish the relation among pg, p1, pe, and 7,
we consider a downward incident irradiance W; initially
located just beneath the recto interface. We describe the
interaction of this irradiance with the grounded sub-
strate, i.e., with the substrate and its verso, and calculate
the total irradiance W, that eventually reaches the recto
interface. The verso part of the grounded substrate has a
reflectance ry. It is either the verso interface alone, of re-
flectance ry=rjy, or a colored interface of reflectance r,
=r(ty), ty being the normal transmittance of the verso
inked layer (Section 4).

Figure 4(b) describes the interaction of the incident ir-
radiance W; with the substrate and the verso. A fraction
p1 of W, is directly reflected by the substrate without
reaching the verso. A fraction 7 of W; crosses the interface
and reaches the verso where a fraction ry is reflected. The
reflected irradiance oW, either crosses the substrate
back to the recto within a proportion 7 or undergoes sev-
eral reflections between the substrate (intrinsic reflec-
tance py) and the verso-colored interface (reflectance rg)
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recto

substrate

verso

(a) (b)

Fig. 4. (a) Grounded substrate reflectance pg, as defined in the
Williams—Clapper model, is the ratio between the irradiance W,
reflected by the substrate bounded on its verso and the incident
irradiance W;. (b) The reflected irradiance W, can be expressed as
a function of the substrate’s intrinsic reflectances (p; at the recto
side, py at the verso side) and its intrinsic transmittance 7 by tak-
ing into account the multiple internal reflections at the verso in-
terface (reflectance ry).

before crossing the substrate toward the recto. The total
irradiance W, reaching the recto is

Wr=p1Wi+727‘2Wi(1+r2p2+r3p3+ )

The infinite sum forms a geometric series converging
toward 1/(1-rgps). The reflected irradiance becomes

o5
Wr= p1t W,

1—-ropy

and the grounded substrate reflectance pp is

Wr 7'272

(54)

The same expression for pg would be given by Kubel-
ka’s multilayer model [Ref. 8, Eq. (10)] if r5 was the reflec-
tance of a second scattering layer of the same refractive
index.

In the Williams—Clapper reflectance expression [Eq.
(53)], we replace the reflectance of the grounded substrate
layer pg by its expanded expression [Eq. (54)] and obtain

To1(6p)

U
RWC — TOI(GO) n2 tl/cos 00tt/cos 23
T

p1—ra(p1pe - 7’2)
X .
[1-r(®)p1](1 = pory) — r(t)ror

This is the same expression as the one derived accord-
ing to our recto—verso model [Eq. (44)]. Therefore, the
Williams—Clapper model is a particular embodiment of
our recto—verso model where the Williams—Clapper sub-
strate reflectance pg accounts for the multiple internal re-
flections between the substrate and the verso paper side.

Another classical model, the Clapper—Yule model, pre-
dicts the reflectance of halftone prints when the lateral
propagation of light within the substrate is large with re-
spect to the screen element period.>*” Both the Clapper—
Yule model and our recto—verso model rely on the same
assumptions regarding the lateral propagation of light
within the substrate and the uniform thickness of the ink.
As in the Williams—Clapper model, the printing support is
a background of reflectance pg. The reflectance Rcy of a

(55)
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print illuminated under an angle 6, and observed by a ra-
diance detector under an angle 6 is, according to the
Clapper—Yule model [Ref. 27, Eq. (59)],

To1(65) PB(E aktk)2
m’* 1-pprio E axty

Equation (56) can be decomposed into a light penetra-
tion attenuation T,, an internal reflectance R,,, and a
light emergence attenuation T, as in Eq. (2), with

Roy=Tn(6) (56)

Tin=To1(6) E ayty, (67
To1(65)
Tex =T 9 2 Aplps (58)
m
p
R, = i (59)

=
1 - pprip >, axt;

In contrast to the Williams—Clapper model and to our
recto—verso model, the Clapper—Yule model ignores the
fact that the incident and emerging light may follow an
oblique path within the inked layers.27 Therefore, the ex-
ponents u(6y) and u(6y) applied to the ink transmittance
t;, are ignored in Eqs. (57) and (58).

In Eq. (59) let us replace rloEakti by r; and the back-
ground reflectance pg by Eq. (54). The print’s internal re-
flectance becomes

_ p1(1 = pory) +ry7
T (1= pory) = [(1 = poro)py + 757

R,

_ P1""2(P1P2—72)
T (1 -r1p) (1 = 1opg) — iy

(60)

The print’s internal reflectance R,, obtained according
to our model [Eq. (40)] and according to the Clapper—Yule
model [Eq. (60)] have a similar expression. A small differ-
ence exists between the two models in the detailed ex-
pression of r;. The expression rlOEakt,% used in the
Clapper—Yule model is an approximation of Eq. (23) used
in our model. The Clapper—Yule model, for a given colo-
rant of transmittance ¢;, makes implicitly the following
approximati0n27:

r(ty) = rloti, (61)

ie.,

/2 /2
f £t/eos °R 1 ,(6)sin 26d 6 ~ t,%J R10(0)sin 26d6.

=0 6=0

In contrast to our recto—verso model, the Williams—
Clapper and the Clapper—Yule models include the reflect-
ing properties of the verso (reflections at the verso-colored
interface and absorption within a verso inked layer) into
the grounded substrate reflectance pg. Each time a new
color is printed at the verso, parameter pg has to be mea-
sured again. These classical models are therefore reflec-
tance models for recto-only prints. In contrast to the
Williams—Clapper and the Clapper—Yule models, our
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model is a reflectance and transmittance recto—verso
print prediction model. We can predict the print’s reflec-
tance spectrum for any combination of recto—verso colors
by measuring and deducing the recto and verso intrinsic
reflectances p; and py as well as the intrinsic transmit-
tance 7 only once.

8. CALIBRATING THE RECTO-VERSO
REFLECTANCE AND TRANSMITTANCE
MODEL

To predict the reflectance and transmittance spectrum of
recto—verso halftone prints, we first calibrate the model
by calculating all the parameters characterizing the se-
lected printing support and the selected inks: the recto
and verso intrinsic reflectances p;(\) and py(\) of the sub-
strate layer, its intrinsic transmittance 7(\), the transmit-
tance ¢;(\) of the colorants, and the surface coverage a of
each colorant on the recto and on the verso. The colorants
effective surface coverages are estimated as functions of
the nominal surface coverages.14 The parameters are cal-
culated thanks to reflectance and transmittance measure-
ments performed on calibration samples. We assume that
the incident light is collimated and oriented, with an in-
cidence angle 6,. The emerging light is also captured in a
single direction with an angle 6 for the reflectance and 6
for the transmittance. In the present contribution, we
consider halftone patches printed with a single color ink,
e.g., cyan, magenta, or yellow. However, by applying the
Demichel equations28 and by taking into account ink
spreading that occurs when an ink halftone is printed on
top of another ink,* we may apply the model to polychro-
matic halftones.

The first calibration sample corresponds to an un-
printed area of the printing support. We measure its re-
flectance R;(\), whose expression is given by Eq. (44),
with ¢=1 [the reflectance of the interfaces r(¢) becomes
riol. We also measure the transmittance 7'(\) of that
sample, given by Eq. (45) with £=1. Then we measure the
reflectance Ry(\) of the same sample upside down whose
expression is the same as R{(\), but with inverted intrin-
sic reflectances p; and py. These measurements allow us
to deduce the spectral intrinsic reflectances p; and py and
the spectral intrinsic transmittance 7 by solving numeri-
cally the system of Eqgs. (62) for each wavelength:

R, =Ty(6 )Tol(%) p1—T10(p1pa — ™)
1=tol)— =5 (1 =r10p)(1 =r10pg) = (rpn)?’
Ry=Ty(6 )TOI('%) p2— r10(p1pz = 7)
2 01\ 2 (1 =riop)(1 =rigpo) — ("107')2’
T="Ty(6 )TOI(%) :
TR (1- r10p1)(1 = r10p2) = (p1o7)?

(62)

The terms T'1(6p), To1(6;), and 1 are known since they
depend only on the print’s relative refractive index n,
typically equal to 1.5 for a print in contact with air (see
Appendix A).
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To deduce solid ink transmittances, we now consider a
calibration sample covered on the recto with a single solid
ink layer. We measure its reflectance and its transmit-
tance. Their expressions are given, respectively, by Eqs.
(44) and (45), with ¢ being the transmittance of the solid
ink layer, with ro=r;y being the diffuse reflectance of the
verso interface and with r(¢) being the diffuse reflectance
of the recto-colored interface, expressed by Eq. (22) and
tabulated in Table 2 (see Appendix A). We obtain

R
=Ty1(6 )TOI(%)MGO)W(%) p1=rio(pipz = 7)
=Lolf) ™5 (1=r@®)py)(1 = rigps) — rior(t)
(63)
To1(65) -
= (6)
T =Ty (6) P % TS TR —rl
(64)

We assume that the exponent function w(6) has been
evaluated numerically (see Appendix B). Since p;, py, and
7 have also been deduced from Eqgs. (62), Egs. (63) and
(64) depend only on the ink transmittance ¢, which can be
computed numerically for each wavelength. We obtain
one spectral ink transmittance from the measure of re-
flectance and another one from the measure of transmit-
tance. In theory, these two ink transmittance spectra
should be equal.

By repeating this procedure for each ink, and for each
combination of two and three superposed solid inks, we
obtain the spectral transmittances ¢.,t,,%,,t,t,,t,t, of
the respective colorants cyan, magenta, yellow, red, green,
blue, and black. The transmittance of the colorants
printed on the verso are evaluated separately by following
the same procedure as above.

In exceptional cases, inks and substrate surfaces are
identical on the recto and verso side of the print, yielding
identical colorant transmittances. In practice, however,
we observe a small difference between the ink transmit-
tance spectra derived from the measure of the print re-
flectance and the measure of the print transmittance.
Since our model assumes that the inks are nonscattering,
the difference may originate from the backscattering of
light within the inked layers.

We now consider single ink halftone patches printed at
different nominal surface coverages a, e.g., 25%, 50%,
75%. The inked layer is composed of two colorants: The
first colorant corresponds to the ink (transmittance ¢) and
the second one corresponds to the paper white, i.e., no ink
(transmittance 1 and coverage 1-a). Because of the ink
spreading phenomenon (mechanical dot gain), the physi-
cal surface coverage a of an ink halftone differs from its
nominal coverage. We measure the reflectance and the
transmittance of each patch. Their expressions are given
by Egs. (2) and (3), with the following expressions for the
attenuation factor T3, of the penetrating light, for the at-
tenuation factor T, of the emerging light, and for the
print’s internal reflectance R,,, and internal transmittance
T,.:
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e T,, is expressed according to Eq. (26) with the two
colorants paper white and ink:

Tin = T()l(ao)(l —-a+ at”(eo)).

e For the print reflectance, since light emerges across
the colored recto interface, T, derives from Eq. (31), with
the two colorants paper white and ink:

T01(06) ’
T = 7 (1-a+ atM ),
™

e For the print transmittance, since light emerges
across the unprinted verso interface, T, derives from Eq.
(30) with t=1:

T8
ex — m?

e R, and T,, are expressed by Eqgs. (40) and (41), where
the diffuse reflectance of the verso interface is ro=r;, and
where the diffuse reflectance of the recto-colored interface
ry derives from Eq. (23) with the two colorants paper
white and ink:

ri=(1-a)ry+ar(t),

where ry is the diffuse reflectance of the paper white col-
ored interface surface part and r(¢) is the diffuse reflec-
tance of the ink colored interface surface part [Eq. (22)].

From the reflectance expression or from the transmit-
tance expression we fit the unknown physical coverage a
by minimizing the sum of square differences between the
measured and the predicted spectra. For each ink, we ob-
tain a table of correspondence between the nominal and
the effective surface coverages. Thanks to linear interpo-
lation, tabulated values are converted to a continuous
curve. Nominal to effective surface coverage curves are
also calculated for the inks printed on the verso.

9. EXPERIMENTAL VERIFICATION

We have tested the reflectance and transmittance predic-
tion model on recto—verso halftone patches printed at 180
lines per inch with an offset proofing press. The patches
were printed on white polyvinyl chloride sheets (titanium
oxide pigments). This printing support has perfectly flat
interfaces, is not fluorescent, does not allow the inks to
penetrate the substrate, and has a refractive index of
1.54. Tt thus satisfies the properties required to apply the
recto—verso reflectance and transmittance prediction
model.

Since the print is assumed to be only in contact with
the air, we raised the printing support a few centimeters
above the table.

The model was calibrated from transmittance measure-
ments according to the method presented in Section 8.
Since the recto and the verso have been printed during
different offset print passes, respective ink thicknesses
and surface coverages are slightly different between the
recto and the verso. We therefore calibrate separately the
recto and the verso inked layers. The parameters of the
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Table 1. Difference in AE94 between Predicted and Measured Transmittance Spectra ¢

Inked Layer on Verso®

Recto” C M Y R G B K C50 Average
C 0.5 1.2 2.8 0.6 13 0.6 16 15 13
M 2.2 1.2 0.9 0.9 1.3 0.9 16 0.9 1.2
Y 1.0 0.7 0.5 0.8 0.9 0.3 16 1.3 0.9
R 2.3 0.8 0.4 0.7 15 11 14 04 11
G 0.5 0.5 2.6 0.7 0.8 0.4 3.3 2.3 14
B 2.1 1.0 0.2 18 1.6 1.2 11 14 1.3
K 2.0 16 0.4 15 0.7 15 1.4 17 14

C25 0.6 2.3 0.7 2.0 2.3 0.7 17 0.7 14
C50 0.5 2.0 16 19 2.0 11 2.5 0.8 1.6
C75 0.2 2.0 17 1.6 15 0.7 15 0.5 1.2
Average 1.2 1.3 1.2 1.3 1.4 0.9 18 1.2 1.3

“For offset inks printed on a polyvinyl chloride substrate. Differences between transmittance spectra are expressed as CIELAB AE94 values.

’C stands for cyan solid inked layer; M for magenta; Y for yellow; R for superposed magenta and yellow solid inks yielding the red colorant; G for solid yellow and cyan
yielding the green colorant; B for solid cyan and magenta yielding the blue colorant; K for the superposed cyan, magenta, and yellow solid inks, yielding the black colorant. C25,
C50, and C75 stand for cyan halftones of respective nominal surface coverage 0.25, 0.5, and 0.75.

“Average of the AE94 values of the corresponding column or row in the table.

recto inked layer are calculated from patches printed on
the recto only (unprinted verso), and those of the verso
inked layer are calculated from patches printed on the
verso only (unprinted recto). We predict the transmit-
tance spectra of recto—verso patches. The difference be-
tween the predicted and the measured spectra (Table 1) is
expressed according to the CIELAB AE94 color difference
formulas.®

The mean difference between measured transmission
spectra and transmission spectra predicted according to
the recto—verso model is AE94=1.3. As can be seen from
Table 1, more than 95% of the predicted transmittance
spectra have a AE94 prediction error of less than 2.5,
which corresponds to the normal offset printing accuracy.
This experiment shows that the prediction accuracy
that is achieved by the proposed model is similar to the
prediction accuracy of reflection spectra that is achieved
by the classical Clapper—Yule model* for recto-only offset
prints.

10. CONCLUSIONS

We present a new model enabling us to predict both the
reflectance and the transmittance of recto—verso halftone
prints. Both sides of the print are allowed to be printed
with different solid or halftone inks. The model assumes
that light propagation within the print is important with
respect to the halftone screen period. The model com-
prises three independent components. The two compo-
nents describing the attenuation of incident and exiting
light take into account the Fresnel transmission across
the interface and the absorption by the inked layer,
according to, respectively, the geometry of illumination
and the geometry of light detection. We consider the cases
of collimated and of perfectly diffuse illumination. With
respect to light detection, we consider the cases of the in-
tegrating sphere and of the radiance detector. The third
model component, which is independent of the illumina-

tion and detection conditions, accounts for the multiple
internal reflections between the interfaces and the diffus-
ing substrate, as well as for the multiple transmissions
from one interface to the other across the substrate. This
third model component yields one expression for the
recto—verso halftone print internal reflectance and one ex-
pression for its internal transmittance.

Both the internal reflectance and the internal trans-
mittance can also be obtained by extending the Kubelka—
Munk model to recto—verso inked interfaces. We establish
a relationship between the internal reflectance and
transmittance of our model and Kubelka—Munk’s
scattering and absorption parameters. By deducing
the internal reflectance or transmittance of our
model from spectral measurements, one may easily
compute the corresponding Kubelka—Munk scattering
and absorption parameters. The recto—verso reflectance
and transmittance model is, however, more general
than the Kubelka—Munk model, since it does not
assume a homogeneous scattering substrate. The only
condition is that the exterior layers are strongly scatter-
ing, ensuring that light is completely diffuse when pen-
etrating or emerging from the substrate. Both the recto
intrinsic reflectance and the verso intrinsic reflectance,
and therefore the corresponding internal reflectance, can
be easily deduced from spectral reflectance measure-
ments carried out on the two sides of the recto—verso
print.

Since the proposed reflectance and transmittance
model supports the classical Williams—Clapper and the
Clapper—Yule models as special cases and since it encom-
passes the extended Kubelka—Munk model, it provides a
unified model for scattering substrates with inked inter-
faces. Such a unified model offers new perspectives both
for spectral reflection and transmission predictions and
for characterizing the properties of both color halftone
prints and scattering materials painted with nonscatter-
ing inks.
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APPENDIX A: NUMERICAL EVALUATIONS
OF FRESNEL REFLECTANCES AND
TRANSMITTANCES

The fractions of incident light reflected and transmitted
by a print—air interface depend on the relative index of re-
fraction of the interface, the side on which the light is in-
cident, and on the angular distribution of the incident
light. Most printing supports have a refractive index very
close to n1=1.5. The refractive index of the air n, is equal
to 1. We give here the numerical values of the reflectance
and transmittance of a print—air interface whose relative
index of refraction is ny/ny=1.5.

Let us first consider that the incident light is colli-
mated. The reflectance and the transmittance of the in-
terface are given by the Fresnel coefficients. According to
the notations introduced in Section 2, the reflectance and
the transmittance of the interface illuminated from the
air under an incidence 6, are, respectively, Ryi(6,) and
T91(69)=1-R(1(6y). In the 45°/0° measuring geometry,
the collimated incident light reaches the interface from
the air side at angle of 45°. For an interface having a rela-
tive index of refraction of 1.5, we have R(1(6;)=0.05 and
therefore T;(6,)=0.95.

When the incident light illuminates the print side of
the interface under an incidence 6, the interface’s reflec-
tance and transmittance are, respectively, Ri9(6;) and
T19(61)=1-R1y(6;). Calling 6; the angle of emergence of
the light into the air, related with 6; according to Snell’s
refraction law, the transmittance of the interface is also
T10(07)=T1(6y). In the 45°/0° measuring geometry, the
detector captures the light emerging into the air perpen-
dicularly to the print (6;=6;=0°). For a relative index of
refraction of 1.5, we have Ry(0°)=0.04 and therefore
TlO( 01) = 096

When the incident light is Lambertian, the interface’s
reflectance and transmittance are, respectively, ry; [Eq.
(15)] and t(; [Eq. (16)] for an illumination at the air side
and 1 [Eq. (18)] and ¢1 [Eq. (19)] for an illumination at
the print side. According to Eqgs. (17), (19), and (20), we
have t01= 1—7'0]_, t10= 1—7‘10, and t10=(n0/n1)2t01. For a
relative index of refraction of 1.5, we have ry;=0.092, ¢(;
=0.908, r1p=0.596, and ¢17=0.404. For other refractive in-
dices, evaluation tables of ry; and 1o have been published
by Judd.?* The diffuse reflectance of a colored interface is
a function of the transmittance ¢ of the colorant layer. It is
expressed by Eq. (22). Table 2 gives numerical values of
r(t) as a function of ¢ for a print—air relative refractive in-
dex of 1.5. A linear interpolation of these values provides
a good approximation of the exact function r(z).

Table 2. Diffuse Reflectance of Colored Interfaces”

t r(t) t r(t) t r(t)
0 0 0.5 0.047 0.83 0.272
0.15 0.001 0.55 0.065 0.87 0.327
0.25 0.006 0.6 0.086 0.9 0.374
0.3 0.01 0.65 0.113 0.93 0.429
0.35 0.016 0.7 0.146 0.95 0.47
0.4 0.023 0.75 0.187 0.97 0.516
0.45 0.034 0.8 0.237 1 0.596

“As a function of ink normal transmittance ¢ for a relative refractive index of 1.5.
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APPENDIX B: AVERAGE PATH u
TRAVERSED BY THE DIFFUSE INCIDENT
LIGHT IN THE INKED LAYER

Incident diffuse light crossing a colored interface is at-
tenuated by the factor Tj, expressed in Section 3 [Eq.
(27)]. In approximation (28), we propose a simplified ex-
pression where the coefficient u represents the average
path traversed by the light within the inked layer. The
approximation is

/2 /2
T, = J To1(0)t™? sin 2640 ~ t”j To1(0)sin 26d6,

6=0 6=0

(B1)

where the function w(6) is given by Eq. (24), with ¢ being
the normal transmittance of the ink layer.

On the left side of Eq. (B1), the exact expression of T},
depends on the Fresnel coefficient T'y;(6), which is a func-
tion of the relative refractive index n=n1/n( of the print—
air interface and on the transmittance ¢ of the inked layer
at normal incidence. On the right side, the expression of
T;, is decomposed into a term ¢* depending only on the
ink transmittance, and an integral, equal to the external
transmittance of the interface ¢, [Eq. (16)], depending
only on the relative refractive index of the print—air inter-
face. Typically, the print—air interface has a relative re-
fractive index of 1.5 and ¢(; is equal to 0.9 for diffuse in-
cident light.

The exponent u applied to the ink transmittance is a
constant corresponding to the average oblique path tra-
versed by the diffuse light within the inked layer. If the
irradiance crossing the inked layer would have been Lam-
bertian, all the oblique paths within the inked layer
would have been traversed by the same radiance. But
since the Fresnel transmission coefficient is angle depen-
dent, the part of the diffuse incident light transmitted by
the interface is not Lambertian. The oblique paths within
the inked layer are therefore traversed by radiances that
depend on the Fresnel transmission coefficient, and the
average oblique path u traversed by the diffuse light
therefore depends on the refractive index of the print-air
interface.

Let us numerically compute the coefficient u for a given
refractive index. We take m equidistant values ¢; of the
inked layer’s transmittance, from ¢4=0 to ¢,,_;=1. We look
for the coefficient x that minimizes the sum of the square
differences between the exact expression of T}, and its ap-
proximated expression, i.e., the coefficient p that mini-
mizes

m

1 /2 2
(tf‘tm— f To1(6)4? sin26d0) )

=0 6=0

For a print-air refractive index of 1.5, we obtain u
=1.134. Equation (B1) is very accurate. If we plot the ex-
act and the approximated expressions of T}, as functions
of ¢; on the same graph, both curves are perfectly super-
posed.
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APPENDIX C: SOLVING THE
KUBELKA-MUNK DIFFERENTIAL
EQUATION SYSTEM WITH THE LAPLACE
TRANSFORM

Let us solve the Kubelka—Munk differential equation sys-
tem

d
—i,(x) = (K + S)i,(x) - Siy(x),
dx

d
ait(x) =8i,(x) - (K+8)i,(x). (C1

To convert this differential equation system into a lin-
ear system, we apply the Laplace transform,®’ which
transforms a causal function f(x) into a function F(p) de-
fined by

F(p)= J fl)ePtdt.
0

The Laplace transform is linear, i.e., af(x)+bg(x) is
transformed into aF(p)+bG(p). The derivative of function
f is transformed into pF(p)-f(0), where the constant f(0)
is the value of f at x=0.

Let us apply the Laplace transform to the equation sys-
tem (C1). We call I.(p) and I;(p) the transforms of i,.(x)
and i, (x). We obtain the following linear system of two
equations with the two unknown variables I,.(p) and I,(p):

pl(p) -1,(0) = (K +S)L(p) - SI,(p),

pl(p) -i(0) =SI.(p) - (K +S)I,(p). (C2)
The solutions of the linear equation system (C2) are

1,(0)(p + aS) - 8i,(0)

r = p2 _ bZS2 ’ (CS)
1(0)(p - asS) +Si,(0)
t = p2 _ b282 ’ (04)
with
a=(K+S)/S,

——
b= \r'a2— 1,

and where 7,(0) is the downward irradiance located at the
recto boundary of the layer, i.e., at the depth x=0, and
1;(0) is the upward irradiance located at the verso bound-
ary, i.e., at depth x=h.

The terms p/(p%-b2S?) and bS/(p%2-b2S?) are, respec-
tively, the transforms of cosh(bSx) and sinh(bSx). There-
fore, Egs. (C3) and (C4) are the transforms of functions
i,(x) and i,(x) expressed as

1
i,(x) =i,(0)cosh(bSx) + (@i, (0) ~ (0))sinh(bSx),

(C5)
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1
i/(x) =i,(0)cosh(bS) + (;,(0) ~ ai,(0)sinh(bSx).

(C6)

Equations (C5) and (C6) are the general solutions of the
Kubelka—Munk differential equation system (C1), where
the downward and upward irradiances i,(0) and i,(0) at
the recto boundary x=0 depend on the exterior illumina-
tion and on the recto and verso reflectors.

APPENDIX D: DERIVING THE REFLECTANCE
AND THE TRANSMITTANCE OF A
SCATTERING LAYER BOUNDED BY TWO
REFLECTORS FROM THE KUBELKA-MUNK
DIFFERENTIAL EQUATION SYSTEM

The internal reflectance and internal transmittance of the
scattering layer are given, respectively, by the ratios
i-(0)/Iy and i,(h)/I,. The expressions of i,.(0) and i,(h) are
derived from the general solutions of Egs. (C5) and (C6) of
the Kubelka—Munk differential equation system (C1) by
applying specific boundary conditions.

Let us consider a layer bounded at x=0 and x=A by two
reflectors of respective reflectances ry and rj,. These re-
flectors may be interfaces between two media, interfaces
incorporating an inked layer, or backscattering back-
grounds.

At x=0, the layer receives the source irradiance I,
downwards. In addition to this source irradiance, a frac-
tion ry of the upward irradiance i,.(0) is reflected by the
recto and also propagates downwards. The total down-
ward irradiance i,(0) is therefore

1:(0) =Io + roi,(0). (D1)

At x=h, the sublayer receives the downward irradiance
i;(h). There is no light propagating upwards from the ex-
terior. However, a fraction rj, of the irradiance i,(h) is re-
flected by the lower reflector and forms the upward irra-
diance i,(h):

i,(h) =rpi,(h). (D2)
We can insert the expression for i,.(h) given by Eq. (D2)
at x=h into Eq. (C5):

1
rpi(h) =1i.(0)cosh(bSh) + g[air(O) -,

+710i,(0))]sinh(bSh). (D3)

We insert into Eq. (C6) the expression for i,(0) given by
Eq. (D1):

1
ir() = (To + 14, (0))cosh(bSh) + -[i,(0) ~ally

+74i,(0))]sinh(bSh). (D4)

Equations (D3) and (D4) form a linear system of two
equations depending on the two unknown variables i,(0)
and i,(h), i.e., on the two irradiances exiting the print.
The solutions of this system are
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(1 - ary)sinh(bSh) + bry, cosh(bSh)

lr(O) = IO

(a —ro—ry +argry)sinh(bSh) + b(1 - rory)cosh(bSh)’

(D5)

b

i(h) =1,

The ratios i,(0)/I, and i,(h)/I, are, respectively, the
print’s internal reflectance R, and transmittance T that
include the multiple reflections at the upper and the
lower reflectors (rg and r,):

(1-ar,)sinh(bSh) + bry, cosh(bSh)

Ry = ,
b (a =ro—ry+aryry)sinh(bSh) + b(1 — ror;,)cosh(bSh)
(D7)
r b
®7 (@ -ro—ry, +argry)sinh(bSh) + b(1 - rory)cosh(bSh)
(D8)

APPENDIX E: ORIGINAL KUBELKA-MUNK
MODEL AND SAUNDERSON CORRECTION

In their original papers,"” Kubelka and Munk consider a
substrate layer superposed on a background of reflectance
r¢ having the same refractive index as the substrate layer.
The recto interface is ignored. According to Kubelka, [Ref.
7, Eq. 26], the reflectance Ry of the substrate bounded
by the background is

(1 -arg)sinh(bSh) + br, cosh(bSh)

Ryy= - . E1)
(@ —r,)sinh(bSh) + b cosh(bSh)

Equation (E1) can be derived from Eq. (D7) by setting
ro=0 and r,=r,. However, in the case where the sub-
strate, typically of refractive index 1.5, is in contact with
the air at the recto, the recto interface cannot be ignored
since it behaves as a reflector. A strongly scattering layer
illuminates the interface with air with Lambertian irra-
diance. The reflectance of the interface is therefore ry.
Saunderson’ introduced a correction to the Kubelka—
Munk reflectance [Eq. (E1)] accounting for the optical ef-
fects of the recto interface, i.e., the surface specular reflec-
tion (ignored when the incidence angle and the
observation angle are different), the penetration of light
through the interface (attenuation T},), the emergence of
light through the interface (attenuation 7',,), and the mul-
tiple reflections occurring between the scattering layer
(reflectance Rky expressed according to the Kubelka—
Munk model) and the interface (reflectance ry):

Ry
1_"10RKM.

Rg expresses the global reflectance of the bounded scat-
tering layer when the surface specular reflection is dis-
carded. Let us expand the expression of Rg by replacing in
Eq. (E2) the term Ry by its expression in Eq. (E1). The

RS = TinTex (EZ)

(@ —ro—ry, +argr,)sinh(bSh) + b(1 — rory)cosh(bSh)

(D6)

[

resulting expression matches the expression of Eq. (D7) of
R, obtained by considering directly the scattering me-
dium bounded at the recto and the verso by two reflectors
of respective reflectances ry=r; and r, =r,. Therefore, the
Saunderson-corrected Kubelka—Munk model is a special
form of our extended Kubelka—Munk formulation [Eq.
(D7)] for a scattering medium bounded by two reflectors of
respective reflectances ry and r;,.
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